首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Influenza virus RNA‐dependent RNA polymerase is a multi‐functional heterotrimer, which uses a ‘cap‐snatching’ mechanism to produce viral mRNA. Host cell mRNA is cleaved to yield a cap‐bearing oligonucleotide, which can be extended using viral genomic RNA as a template. The cap‐binding and endonuclease activities are only activated once viral genomic RNA is bound. This requires signalling from the RNA‐binding PB1 subunit to the cap‐binding PB2 subunit, and the interface between these two subunits is essential for the polymerase activity. We have defined this interaction surface by protein crystallography and tested the effects of mutating contact residues on the function of the holo‐enzyme. This novel interface is surprisingly small, yet, it has a crucial function in regulating the 250 kDa polymerase complex and is completely conserved among avian and human influenza viruses.  相似文献   

4.
5.
Influenza virus uses a unique cap-snatching mechanism characterized by hijacking and cleavage of host capped pre-mRNAs, resulting in short capped RNAs, which are used as primers for viral mRNA synthesis. The PA subunit of influenza polymerase carries the endonuclease activity that catalyzes the host mRNA cleavage reaction. Here, we show that PA is a sequence selective endonuclease with distinct preference to cleave at the 3′ end of a guanine (G) base in RNA. The G specificity is exhibited by the native influenza polymerase complex associated with viral ribonucleoprotein particles and is conferred by an intrinsic G specificity of the isolated PA endonuclease domain PA-Nter. In addition, RNA cleavage site choice by the full polymerase is also guided by cap binding to the PB2 subunit, from which RNA cleavage preferentially occurs at the 12th nt downstream of the cap. However, if a G residue is present in the region of 10–13 nucleotides from the cap, cleavage preferentially occurs at G. This is the first biochemical evidence of influenza polymerase PA showing intrinsic sequence selective endonuclease activity.  相似文献   

6.
Influenza virus mRNAs bear a short capped oligonucleotide sequence at their 5' ends derived from the host cell pre-mRNAs by a "cap-snatching" mechanism, followed immediately by a common viral sequence. At their 3' ends, they contain a poly(A) tail. Although cellular and viral mRNAs are structurally similar, influenza virus promotes the selective translation of its mRNAs despite the inhibition of host cell protein synthesis. The viral polymerase performs the cap snatching and binds selectively to the 5' common viral sequence. As viral mRNAs are recognized by their own cap-binding complex, we tested whether viral mRNA translation occurs without the contribution of the eIF4E protein, the cellular factor required for cap-dependent translation. Here, we show that influenza virus infection proceeds normally in different situations of functional impairment of the eIF4E factor. In addition, influenza virus polymerase binds to translation preinitiation complexes, and furthermore, under conditions of decreased eIF4GI association to cap structures, an increase in eIF4GI binding to these structures was found upon influenza virus infection. This is the first report providing evidence that influenza virus mRNA translation proceeds independently of a fully active translation initiation factor (eIF4E). The data reported are in agreement with a role of viral polymerase as a substitute for the eIF4E factor for viral mRNA translation.  相似文献   

7.
8.
Influenza viruses cause a significant level of morbidity and mortality in the population every year. Their resistance to current anti-influenza drugs increases the difficulty of flu treatment. Thus, development of new anti-influenza drugs is necessary in regards of prevent the tragedy of influenza pandemic. The Polymerase basic protein 2 (PB2) subunit of influenza virus RNA polymerase is one of potential targets for new drugs because the binding of PB2 with the 5' cap of the host pre-mRNAs is the initial step of the virus' protein synthesis. In this study, we compared the binding potency of PB2 cap binding domain with two small molecules, i.e., RO and PPT28, with that of PB2 with cap analog m7GTP. The calculated binding energies showed that RO and PPT28 had higher binding affinity with PB2. Further interaction analysis showed that the important parts for binding were the five- and six-member heterocyclic rings (the 6/5-member rings) of small molecules, as well as the hydrophobic parts of RO and PPT28 which had good interactions with the hydrophobic residues in the binding cavity. Thus, RO and PPT28 are two potential anti-influenza drugs targeted PB2, which may inhibit the growth of influenza virus by competitively binding with the cap structure binding domain of PB2.  相似文献   

9.
10.
11.
Li ML  Rao P  Krug RM 《The EMBO journal》2001,20(8):2078-2086
The cap-dependent endonuclease of the influenza viral RNA polymerase, which produces the capped RNA primers that initiate viral mRNA synthesis, is comprised of two active sites, one for cap binding and one for endonuclease cleavage.We identify the amino acid sequences that constitute these two active sites and demonstrate that they are located on different polymerase subunits. Binding of the 5' terminal sequence of virion RNA (vRNA) to the polymerase activates a tryptophan-rich, cap-binding sequence on the PB2 subunit. At least one of the tryptophans functions in cap binding, indicating that this active site is probably similar to that of other known cap-binding proteins. Endonuclease cleavage, which is activated by the subsequent binding of the 3' terminal sequence of vRNA, resides in a PB1 sequence that contains three essential acidic amino acids, similar to the active sites of other enzymes that cut polynucleotides to produce 3'-OH ends. These results, coupled with those of our previous study, provide a molecular map of the five known essential active sites of the influenza viral polymerase.  相似文献   

12.
The flavivirus 2′-O-nucleoside N-terminal RNA methyltransferase (MTase) enzyme is responsible for methylating the viral RNA cap structure. To increase our understanding of the mechanism of viral RNA cap binding we performed a detailed structural and biochemical characterization of the guanosine cap-binding pocket of the dengue (DEN) and yellow fever (YF) virus MTase enzymes. We solved an improved 2.1 Å resolution crystal structure of DEN2 Mtase, new 1.5 Å resolution crystal structures of the YF virus MTase domain in apo form, and a new 1.45 Å structure in complex with guanosine triphosphate and RNA cap analog. Our structures clarify the previously reported DEN MTase structure, suggest novel protein-cap interactions, and provide a detailed view of guanine specificity. Furthermore, the structures of the DEN and YF proteins are essentially identical, indicating a large degree of structural conservation amongst the flavivirus MTases. Guanosine triphosphate analog competition assays and mutagenesis analysis, performed to analyze the biochemical characteristics of cap binding, determined that the major interaction points are (i) guanine ring via π−π stacking with Phe24, N1 hydrogen interaction with the Leu19 backbone carbonyl via a water bridge, and C2 amine interaction with Leu16 and Leu19 backbone carbonyls; (ii) ribose 2′ hydroxyl interaction with Lys13 and Asn17; and (iii) α-phosphate interactions with Lys28 and Ser215. Based on our mutational and analog studies, the guanine ring and α-phosphate interactions provide most of the energy for cap binding, while the combination of the water bridge between the guanine N1 and Leu19 carbonyl and the hydrogen bonds between the C2 amine and Leu16/Leu19 carbonyl groups provide for specific guanine recognition. A detailed model of how the flavivirus MTase protein binds RNA cap structures is presented.  相似文献   

13.
14.
Mazza C  Segref A  Mattaj IW  Cusack S 《The EMBO journal》2002,21(20):5548-5557
The heterodimeric nuclear cap-binding complex (CBC) binds to the 5' cap structure of RNAs in the nucleus and plays a central role in their diverse maturation steps. We describe the crystal structure at 2.1 A resolution of human CBC bound to an m(7)GpppG cap analogue. Comparison with the structure of uncomplexed CBC shows that cap binding induces co-operative folding around the dinucleotide of some 50 residues from the N- and C-terminal extensions to the central RNP domain of the small subunit CBP20. The cap-bound conformation of CBP20 is stabilized by an intricate network of interactions both to the ligand and within the subunit, as well as new interactions of the CBP20 N-terminal tail with the large subunit CBP80. Although the structure is very different from that of other known cap-binding proteins, such as the cytoplasmic cap-binding protein eIF4E, specificity for the methylated guanosine again is achieved by sandwiching the base between two aromatic residues, in this case two conserved tyrosines. Implications for the transfer of capped mRNAs to eIF4E, required for translation initiation, are discussed.  相似文献   

15.
Influenza virus polymerase complex is a heterotrimer consisting of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA). Of these, only PB1, which has been implicated in RNA chain elongation, possesses the four conserved motifs (motifs I, II, III, and IV) and the four invariant amino acids (one in each motif) found among all viral RNA-dependent RNA or RNA-dependent DNA polymerases. We have modified an assay system developed by Huang et al. (T.-J. Huang, P. Palese, and M. Krystal, J. Virol. 64:5669-5673, 1990) to reconstitute the functional polymerase activity in vivo. Using this assay, we have examined the requirement of each of these motifs of PB1 in polymerase activity. We find that each of these invariant amino acids is critical for PB1 activity and that mutation in any one of these residues renders the protein nonfunctional. We also find that in motif III, which contains the SSDD sequence, the signature sequence of influenza virus RNA polymerase, SDD is essentially invariant and cannot accommodate sequences found in other RNA viral polymerases. However, conserved changes in the flanking sequences of SDD can be partially tolerated. These results provide the experimental evidence that influenza virus PB1 possesses a similar polymerase module as has been proposed for other RNA viruses and that the core SDD sequence of influenza virus PB1 represents a sequence variant of the GDN in negative-stranded nonsegmented RNA viruses, GDD in positive-stranded RNA virus and double-stranded RNA viruses, or MDD in retroviruses.  相似文献   

16.
Hsu PC  Hodel MR  Thomas JW  Taylor LJ  Hagedorn CH  Hodel AE 《Biochemistry》2000,39(45):13730-13736
7-Methylguanosine (m(7)G), also known as the mRNA "cap", is used as a molecular tag in eukaryotic cells to mark the 5' end of messenger RNAs. The mRNA cap is required for several key events in gene expression in which the m(7)G moiety is specifically recognized by cellular proteins. The configurations of the m(7)G-binding pockets of a cellular (eIF4E) and a viral (VP39) cap-binding protein have been determined by X-ray crystallography. The binding energy has been hypothesized to result from a pi-pi stacking interaction between aromatic residues sandwiching the m(7)G base in addition to hydrogen bonds between the base and acidic protein side chains. To further understand the structural requirements for the specific recognition of an m(7)G mRNA cap, we determined the effects of amino acid substitutions in eIF4E and VP39 cap-binding sites on their affinity for m(7)GDP. The requirements for residues suggested to pi-pi stack and hydrogen bond with the m(7)G base were examined in each protein by measuring their affinities for m(7)GDP by fluorimetry. The results suggest that both eIF4E and VP39 require a complicated pattern of both orientation and identity of the stacking aromatic residues to permit the selective binding of m(7)GDP.  相似文献   

17.
18.
RNA聚合酶是由PA、PB1和PB2三个亚基构成的蛋白质复合物,在流感病毒基因组的转录复制过程中发挥着重要作用。随着研究的不断深入,RNA聚合酶已经成为抗流感病毒药物重要的靶点。本文介绍了RNA聚合酶各个亚基结构、功能以及RNA聚合酶抑制剂的研究进展。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号