首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure is described for light microscopic immunocytochemical localization of catalase and three enzymes of peroxisomal lipid beta-oxidation: acyl-CoA oxidase, enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase in semi-thin sections of rat liver processed for routine electron microscopy. Satisfactory immunostaining required the removal of the epoxy resin with sodium ethoxide, controlled digestion of deplasticized sections with proteases and, in case of osmiumfixed tissue, bleaching with oxidants. Resin removal was essential for successful immunostaining, and protease treatment enhanced markedly the intensity of the reaction. This study shows that tissues processed for conventional ultrastructural studies can be used for postembedding immunocytochemical demonstration of various peroxisomal enzymes.  相似文献   

2.
Summary We describe the immunocytochemical localization of four peroxisomal enzymes by light microscopy in human liver and kidney processed routinely by formalin fixation and paraffin embedding. Monospecific antisera against catalase and three enzymes of peroxisomal lipid -oxidation (acyl-CoA oxidase, bifunctional protein (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase) and 3-ketoacyl-CoA thiolase) were used in conjunction with either the indirect immunoperoxidase method or the protein A—gold technique followed by silver intensification. The sections of formalin-fixed paraffin-embedded tissue had to be deparaffinized and subjected to controlled proteolysis in order to obtain satisfactory immunostaining. Under the conditions employed, peroxisomes were distinctly visualized in liver parenchymal cells with no reaction in bile duct epithelial or sinusoidal lining cells. In the kidney, peroxisomes were confined to the proximal tubular epithelial cells with negative staining of glomeruli, distal tubules and collecting ducts. A positive immunocytochemical reaction was obtained even in paraffin blocks stored for several years. The method offers a simple approach for detection of peroxisomes and evaluation of their various enzyme proteins in material processed routinely in histopathology laboratories and should prove useful in the investigation of the role of peroxisomes in human pathology for both prospective and retrospective studies.  相似文献   

3.
We investigated the immunoreactivity of the peroxisomal lipid beta-oxidation enzymes acyl-CoA oxidase, trifunctional protein, and thiolase in guinea pig liver and compared it with that of homologous proteins in rat, using immunoblotting of highly purified peroxisomal fractions and monospecific antibodies to rat proteins. In addition, the immunocytochemical localization of beta-oxidation enzymes in guinea pig liver was compared with that of catalase. All antibodies showed crossreactivity between the two species, indicating that these peroxisomal proteins have been well conserved, although all exhibited some differences with respect to molecular size and, in the case of acyl-CoA oxidase, in frequency of the immunoreactive bands. In the latter case, a distinct second band in the 70 KD range was observed in guinea pig, in addition to the regular band due to subunit A present in rat liver. This novel band could be due either to trihydroxycoprostanoyl-CoA oxidase or to the non-inducible branched chain fatty acid oxidase described recently. All three beta-oxidation enzymes were immunolocalized by light and electron microscopy to the matrix of peroxisomes, in contrast to catalase, which is also found in the cytoplasm and the nucleus of hepatocytes in guinea pig liver.  相似文献   

4.
We investigated the localization of urate oxidase, peroxisomal fatty acyl-CoA oxidase, and catalase in bovine kidney by immunoblot analysis and protein A-gold immunocytochemistry, using the respective polyclonal monospecific antibodies raised against the enzymes purified from rat liver. By immunoblot analysis, these three proteins were detected in bovine kidney and bovine liver homogenates. Subcellular localization of these three enzymes in kidney was ascertained by protein A-gold immunocytochemical staining of Lowicryl K4M-embedded tissue. Peroxisomes in bovine kidney cortical epithelium possessed crystalloid cores or nucleoids, which were found to be the exclusive sites of urate oxidase localization. The limiting membrane, the marginal plate, and the matrix of renal peroxisomes were negative for urate oxidase staining. In contrast, catalase and fatty acyl-CoA oxidase were found in the peroxisome matrix. These results demonstrate that, unlike rat kidney peroxisomes which lack urate oxidase, peroxisomes of bovine kidney contain this enzyme as well as peroxisomal fatty acyl-CoA oxidase.  相似文献   

5.
Summary The immunocytochemical visualization of the peroxisomal -oxidation enzymes was investigated in three human post mortem liver samples. Acyl-CoA oxidase, bifunctional protein and 3-oxoacyl-CoA thiolase remained immunocytochemically detectable 30, 55 and 72 h after death. Peroxisomes in the parenchymal cells were clearly visualized for light microscopy (paraffin and cryostat sections), using protein A-gold in combination with silver enhancement. In two samples catalase activity became very weak, but catalase antigenicity was well preserved. The findings prove the diagnOstic value of post mortem samples, even after extreme conditions of tissue conservation. The technique of immunocytochemical staining for the peroxisomal -oxidation enzymes on unmounted cryostat sections has not been reported previously. This method allows a quick diagnOsis of biopsies from patients suspected of peroxisomal disorders.  相似文献   

6.
Summary A procedure is described for light microscopic immunocytochemical localization of catalase and three enzymes of peroxisomal lipid -oxidation: acyl-CoA oxidase, enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase in semithin sections of rat liver processed for routine electron microscopy. Satisfactory immunostaining required the removal of the epoxy resin with sodium ethoxide, controlled digestion of deplasticized sections with proteases and, in case of osmiumfixed tissue, bleaching with oxidants. Resin removal was essential for successful immunostaining, and protease treatment enhanced markedly the intensity of the reaction. This study shows that tissues processed for conventional ultrastructural studies can be used for postembedding immunocytochemical demonstration of various peroxisomal enzymes.Supported by the Alexander-von-Humboldt Foundation  相似文献   

7.
Carnitine is a zwitterion essential for the beta-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (Km 20 microM), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.  相似文献   

8.
L-alpha-hydroxyacid oxidase (HAOX), a peroxisomal marker enzyme in mammals, exists in two isozymic forms, HAOX A (EC 1.1.3.1) and HAOX B (EC 1.3.4.2), which differ in their substrate specificity. In rat tissues HAOX A is found exclusively in hepatocyte peroxisomes and HAOX B in renal peroxisomes. Recently we found enzymatic evidence that highly purified peroxisome preparations from beef and sheep kidney cortex contain both isozymes. In situ, the peroxisomes in the proximal tubule cells of both species exhibit peculiar angular outlines apparently due to the presence of multiple marginal plates. Marginal plates are plate-like crystalline matrix inclusions which are apposed to the inner aspect of the peroxisomal membrane. In this study monospecific antibodies against HAOX A and B proteins purified from rat liver and kidney, respectively, were raised in rabbits and used to study the intraorganellar localization of each isozyme in beef and sheep kidney cortex peroxisomes. Incubation of ultra-thin sections of LR White-embedded tissue with anti-HAOX A or B followed by protein A-gold revealed that in both species HAOX A is present diffusely in the peroxisomal matrix, whereas HAOX B is localized almost exclusively in the membrane associated marginal plates. This is the first report on the in situ immunocytochemical characterization of marginal plates, which are the most common inclusions in the matrix of renal peroxisomes.  相似文献   

9.
Ultrastructural localization of three mitochondrial beta-oxidation enzymes, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase in rat liver was studied by a post-embedding immunocytochemical technique. Rat liver was fixed by perfusion. Vibratome sections (100 micron thick) were embedded in Lowicryl K4M. Ultrathin sections were separately incubated with antibody to each enzyme, followed by protein A-gold complex. Gold particles representing the antigenic sites for all enzymes examined were confined exclusively to mitochondria of hepatocytes and other sinus-lining cells. Peroxisomes were consistently negative for the immunolabelling. In the mitochondria the gold particles were localized in the matrical side of inner membrane. The control experiments confirmed the specificity of the immunolabelling. The results firstly indicate that the mitochondrial beta-oxidation enzymes are present in the matrix of mitochondria and associated with the inner membrane.  相似文献   

10.
Quantitative immunoelectron microscopy in conjunction with quantitative analysis of immunoblots have been used to study the effects of bezafibrate (BF), a peroxisome-proliferating hypolipidemic drug, upon six different enzyme proteins in rat liver peroxisomes (Po). Antibodies against following peroxisomal enzymes: catalase, urate oxidase, alpha-hydroxy acid oxidase, acyl-CoA oxidase, bifunctional enzyme (hydratase-dehydrogenase) and thiolase, were raised in rabbits, and their monospecificities were confirmed by immunoblotting. Female Sprague-Dawley rats were treated for 7 days with 250 mg/kg/day bezafibrate and liver sections were incubated with the appropriate antibodies followed by the protein A-gold complex. The labeling density for each enzyme was estimated by automatic image analysis. In parallel experiments immunoblots prepared from highly purified peroxisome fractions of normal and BF-treated rats were incubated with the same antibodies. The antigens were visualized by an improved protein A-gold method including an anti-protein A step and silver amplification. The immunoblots were also quantitated by an image analyzer. The results revealed a selective induction of beta-oxidation enzymes by bezafibrate with thiolase showing the most increase followed by bifunctional protein and acyl-CoA oxidase. The labeling density for catalase and alpha-hydroxy acid oxidase was reduced, confirming fully the quantitative analysis of immunoblots which in addition revealed reduction of uricase. These observations demonstrate that hypolipidemic drugs induce selectively the beta-oxidation enzymes while other peroxisomal enzymes are reduced. The quantitative immunoelectron microscopy with automatic image analysis provides a versatile, highly sensitive and efficient method for rapid detection of modulations of individual proteins in peroxisomes.  相似文献   

11.
Kidney post-nuclear supernatants from genetically lean and obese mice were subjected to subcellular fractionation by dual centrifugation through sucrose gradients in B XIV zonal rotors. Considerable purification of peroxisomes was achieved which allowed the demonstration of acyl-CoA beta-oxidation enzymes and carnitine acyltransferases in these organelles. Comparison of kidney peroxisome-enriched fractions from obese and lean mice indicated a likely relative depression in beta-oxidation enzymes in the obese animal. Measurement of catalase, acyl-CoA oxidase and carnitine octanoyltransferase in whole homogenate of liver and kidney of obese and lean mice revealed significantly reduced levels (to approximately 2/3) of these peroxisomal enzymes in the kidney of ob/ob mice. In contrast the specific activity of catalase and acyl-CoA oxidase was significantly raised in the liver of obese mice.  相似文献   

12.
Peroxisomes contain a system for beta-oxidation of fatty acids which differs from the mitochondrial system and is associated with hydrogen peroxide formation. We show that two enzymes: enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase of the peroxisomal system are present in specific granules of rat eosinophils. Both enzyme proteins were purified from rat liver and monospecific antibodies were raised in rabbits. Eosinophils from peripheral blood and tissue eosinophils from the wall of intestine, fixed by glutaraldehyde and embedded in Epon were investigated. The postembedding immunocytochemical procedure with protein A-gold technique was used. The gold particles representing the antigenic sites for both enzymes were present only in specific granules of eosinophils with no immune deposits in mitochondria, nucleus and the cytoplasm. Although gold particles were found over the entire domain of the granule, the electron dense paracrystalline inclusions contained more gold than the granule matrix. Control preparations incubated with nonspecific IgG and protein A-gold complex alone were negative. These findings indicate that in specific granules of eosinophils both peroxisomal and lysosomal enzymes share the same intracellular compartment. The peroxisomal lipid beta-oxidation in eosinophils may be involved in generation of hydrogen peroxide, which has a crucial role in killing of metazoon parasites.  相似文献   

13.
Only sparse information is available from the literature on the peroxisomal compartment and its enzyme composition in mouse and human lungs. Therefore, in the present investigation we have characterized peroxisomes in different cell types of adult mouse (C57BL/6J) and human lungs in a comprehensive study using a variety of light-, fluorescence- and electron microscopic as well as biochemical techniques and by the use of various peroxisomal marker proteins (Pex13p, Pex14p, ABCD3, beta-oxidation enzymes and catalase). In contrast to previous reports, we have found that peroxisomes are present in all cell types in human and mouse lungs. However, they differ significantly and in a cell-type-specific manner in their structure, numerical abundance and enzyme composition. Whereas catalase showed significant differences between distinct cell types, Pex14p proved to be the marker of choice for labeling all lung peroxisomes. In alveolar type II cells and alveolar macrophages peroxisomes contained significant amounts of the lipid transporter ABCD3 and beta-oxidation enzymes, suggesting their involvement in the modification and recycling of surfactant lipids and in the control of lipid mediators and ligands for nuclear receptors of the PPAR family. Possible connections between ROS and lipid metabolism of lung peroxisomes are discussed.  相似文献   

14.
Rat hepatocytes were cultured for 72 h with or without the addition of 0.5 mM clofibric acid. The activities of individual enzymes of the peroxisomal beta-oxidation pathway (acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and 3-ketoacyl-CoA thiolase) decreased in the control culture, but markedly increased synchronously in the clofibric acid-treated culture. The levels of mRNAs coding for these enzymes and the rates of synthesis of the enzymes were also elevated in the clofibric acid-treated culture, although no proportional relationship was observed between the time-dependent changes of these parameters. The increase in mRNAs was much higher than the increase in the rate of synthesis of the enzymes. The activity of catalase, its mRNA level and the rate of its synthesis were slightly affected. The effects of clofibric acid on the peroxisomal beta-oxidation enzymes and catalase in primary cultured hepatocytes were very similar to those observed in vivo. These results, therefore, suggest that primary culture of hepatocytes should provide a useful means for investigating the mechanism of induction of peroxisomal enzymes and the mechanism of action of peroxisome proliferators.  相似文献   

15.
Immunoblot analyses with antibodies against the peroxisomal beta-oxidation enzymes from rat liver showed the presence of these enzymes in rat and human liver and kidney and rat adrenal gland. The bifunctional protein could not be detected in muscle tissues or cultured muscle cells. Acyl-CoA oxidase was detected in rat heart and cultured human muscle cells. 3-Ketoacyl-CoA thiolase was also detected in human and rat heart and skeletal muscle; however, this enzyme was not detectable in skeletal muscle of Zellweger patients, in agreement with the absence of peroxisomal fatty acid oxidation.  相似文献   

16.
A multifunctional protein from oleate-grown cells of Candida tropicalis has been purified and partially characterized. A simple two-step purification has been developed involving ion-exchange chromatography followed by dye-ligand chromatography on blue Sepharose CL-6B. Homogeneous enzyme with a subunit Mr of 102 000 is obtained in 60% yield. The native relative molecular mass, determined by three different methods, yielded values which suggest that the enzyme is dimeric. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the purified protein revealed a single polypeptide band and reverse-phase high-performance liquid chromatography indicated a single component suggesting that this protein may consist either of two identical or very similar subunits. Three beta-oxidation activities, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA epimerase, co-purified with this protein. The ratio of the three beta-oxidation enzyme activities remained constant during purification and was unchanged by additional chromatographic methods (adsorption and affinity chromatography), thus indicating the multifunctional nature of this protein. Enzymatic staining of the purified protein for 3-hydroxyacyl-CoA dehydrogenase and epimerase, following electrophoresis in a polyacrylamide density gradient, further supported the multifunctionality of this protein. After isopycnic centrifugation of a particulate fraction from oleate-grown cells in a linear sucrose gradient the activities of all individual beta-oxidation enzymes cosedimented with catalase and with the glyoxylate bypass enzymes. This result demonstrated the peroxisomal localization of the multifunctional enzyme. The relationship of this multifunctional protein to the two bifunctional beta-oxidation enzymes isolated from peroxisomes of rat liver and from glyoxysomes of cucumber seeds is discussed.  相似文献   

17.
Catalase and ABCD3 are frequently used as markers for the localization of peroxisomes in morphological experiments. Their abundance, however, is highly dependent on metabolic demands, reducing the validity of analyses of peroxisomal abundance and distribution based solely on these proteins. We therefore attempted to find a protein which can be used as an optimal marker for peroxisomes in a variety of species, tissues, cell types and also experimental designs, independently of peroxisomal metabolism. We found that the biogenesis protein peroxin 14 (PEX14) is present in comparable amounts in the membranes of every peroxisome and is optimally suited for immunoblotting, immunohistochemistry, immunofluorescence, and immunoelectron microscopy. Using antibodies against PEX14, we could visualize peroxisomes with almost undetectable catalase content in various mammalian tissue sections (submandibular and adrenal gland, kidney, testis, ovary, brain, and pancreas from mouse, cat, baboon, and human) and cell cultures (primary cells and cell lines). Peroxisome labeling with catalase often showed a similar tissue distribution to the mitochondrial enzyme mitochondrial superoxide dismutase (both responsible for the degradation of reactive oxygen species), whereas ABCD3 exhibited a distinct labeling only in cells involved in lipid metabolism. We increased the sensitivity of our methods by using QuantumDots?, which have higher emission yields compared to classic fluorochromes and are unsusceptible to photobleaching, thereby allowing more exact quantification without artificial mistakes due to heterogeneity of individual peroxisomes. We conclude that PEX14 is indeed the best marker for labeling of peroxisomes in a variety of tissues and cell types in a consistent fashion for comparative morphometry.  相似文献   

18.
Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome   总被引:12,自引:0,他引:12  
The absence of peroxisomes in patients with the cerebro-hepato-renal (Zellweger) syndrome is accompanied by a number of biochemical abnormalities, including an accumulation of very long-chain fatty acids. We show by immunoblotting that there is a marked deficiency in livers from patients with the Zellweger syndrome of the peroxisomal beta-oxidation enzyme proteins acyl-CoA oxidase, the bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities and 3-oxoacyl-CoA thiolase. Using anti-(acyl-CoA oxidase), increased amounts of cross-reactive material of low Mr were seen in the patients. With anti-(oxoacyl-CoA thiolase), high Mr cross-reactive material, presumably representing precursor forms of 3-oxoacyl-CoA thiolase, was detected in the patients. Catalase protein was not deficient, in accordance with the finding that catalase activity is not diminished in the patients. Thus in contrast to the situation with catalase functional peroxisomes are required for the stability and normal activity of peroxisomal beta-oxidation enzymes.  相似文献   

19.
20.
The beta-oxidation of fatty acids in peroxisomes produces hydrogen peroxide (H2O2), a toxic metabolite, as a bi-product. Fatty acids beta-oxidation activity is deficient in X-linked adrenoleukodystrophy (X-ALD) because of mutation in ALD-gene resulting in loss of very long chain acyl-CoA synthetase (VLCS) activity. It is also affected in disease with catalase negative peroxisomes as a result of inactivation by H2O2. Therefore, the following studies were undertaken to delineate the molecular interactions between both the ALD-gene product (adrenoleukodystrophy protein, ALDP) and VLCS as well as H2O2 degrading enzyme catalase and proteins of peroxisomal beta-oxidation. Studies using a yeast two hybrid system and surface plasmon resonance techniques indicate that ALDP, a peroxisomal membrane protein, physically interacts with VLCS. Loss of these interactions in X-ALD cells may result in a deficiency in VLCS activity. The yeast two-hybrid system studies also indicated that catalase physically interacts with L-bifunctional enzyme (L-BFE). Interactions between catalase and L-BFE were further supported by affinity purification, using a catalase-linked resin. The affinity bound 74-kDa protein, was identified as L-BFE by Western blot with specific antibodies and by proteomic analysis. Additional support for their interaction comes from immunoprecipitation of L-BFE with antibodies against catalase as a catalase- L-BFE complex. siRNA for L-BFE decreased the specific activity and protein levels of catalase without changing its subcellular distribution. These observations indicate that L-BFE might help in oligomerization and possibly in the localization of catalase at the site of H2O2 production in the peroxisomal beta-oxidation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号