首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In Saccharomyces cerevisiae, a branched multistep phosphorelay signaling pathway regulates cellular adaptation to hyperosmotic stress. YPD1 functions as a histidine-phosphorylated protein intermediate required for phosphoryl group transfer from a membrane-bound sensor histidine kinase (SLN1) to two distinct response regulator proteins (SSK1 and SKN7). These four proteins are evolutionarily related to the well-characterized "two-component" regulatory proteins from bacteria. Although structural information is available for many two-component signaling proteins, there are very few examples of complexes between interacting phosphorelay partners. Here we report the first crystal structure of a prototypical monomeric histidine-containing phosphotransfer (HPt) protein YPD1 in complex with its upstream phosphodonor, the response regulator domain associated with SLN1.  相似文献   

2.
Two-component regulatory systems that utilize a multistep phosphorelay mechanism often involve a histidine-containing phosphotransfer (HPt) domain. These HPt domains serve an essential role as histidine-phosphorylated protein intermediates during phosphoryl transfer from one response regulator domain to another. In Saccharomyces cerevisiae, the YPD1 protein facilitates phosphoryl transfer from a hybrid sensor kinase, SLN1, to two distinct response regulator proteins, SSK1 and SKN7. Because the phosphorylation state largely determines the functional state of response regulator proteins, we have carried out a comparative study of the phosphorylated lifetimes of the three response regulator domains associated with SLN1, SSK1, and SKN7 (R1, R2, and R3, respectively). The isolated regulatory domains exhibited phosphorylated lifetimes within the range previously observed for other response regulator domains (i.e., several minutes to several hours). However, in the presence of YPD1, we found that the half-life of phosphorylated SSK1-R2 was dramatically extended (almost 200-fold longer than in the absence of YPD1). This stabilization effect was specific for SSK1-R2 and was not observed for SLN1-R1 or SKN7-R3. Our findings suggest a mechanism by which SSK1 is maintained in its phosphorylated state under normal physiological conditions and demonstrate an unprecedented regulatory role for an HPt domain in a phosphorelay signaling system.  相似文献   

3.
The histidine-containing phosphotransfer (HPt) protein YPD1 is an osmoregulatory protein in yeast that facilitates phosphoryl transfer between the two response regulator domains associated with SLN1 and SSK1. Based on the crystal structure of YPD1 and the sequence alignment of YPD1 with other HPt domains, we site-specifically engineered and purified several YPD1 mutants in order to examine the role of conserved residues surrounding the phosphorylatable histidine (H64). Substitution of the positively charged residues K67 and R90 destabilized the phospho-imidazole linkage, whereas substitution of G68 apparently reduces accessibility of H64. These findings, together with the effect of other mutations, provide biochemical support of the proposed functional roles of conserved amino acid residues of HPt domains.  相似文献   

4.
In Saccharomyces cerevisiae, the histidine-containing phosphotransfer (HPt) protein YPD1 transfers phosphoryl groups between the three different response regulator domains of SLN1, SSK1, and SKN7 (designated R1, R2, and R3, respectively). Together these proteins form a branched histidine-aspartic acid phosphorelay system through which cells can respond to hyperosmotic and other environmental stresses. The in vivo order of phosphotransfer reactions is believed to proceed from SLN1-R1 to YPD1 and then subsequently to SSK1-R2 or SKN7-R3. The individual phosphoryl transfer reactions between YPD1 and the response regulator domains have been examined kinetically. A maximum forward rate constant of 29 s(-)(1) was determined for the reaction between SLN1-R1 approximately P and YPD1 with a K(d) of 1.4 microM for the SLN1-R1 approximately P.YPD1 complex. In the subsequent reactions, phosphotransfer from YPD1 to SSK1-R2 is very rapid (160 s(-)(1)) and is strongly favored over phosphotransfer to SKN7-R3. Phosphotransfer reactions between YPD1 and SLN1-R1 or SKN7-R3 were reversible. In contrast, no reverse transfer from SSK1-R2 approximately P to YPD1 was observed. These findings are consistent with the notion that SSK1 is constitutively phosphorylated under normal osmotic conditions. In addition, we have examined the roles of several conserved amino acid residues surrounding the phosphorylatable histidine (H64) of YPD1 using phosphoryl transfer reactions involving YPD1 mutants. With respect to phosphoryl transfer from SLN1-R1 approximately P, only one YPD1 mutant (K67A) exhibited an increase in K(d) and thus affects binding of YPD1 to SLN1-R1 approximately P, whereas other mutants (R90A, Q86A, and G68Q) showed a decrease in phosphoryl transfer rate. Only the G68Q-YPD1 mutant was significantly affected in phosphotransfer to SSK1-R2 ( approximately 680-fold decrease in rate in comparison to wild-type). This is the first report of a kinetic analysis of a eukaryotic "two-component" histidine-aspartic acid phosphotransfer system, enabling a comparison of the transfer rates and binding constants to the few bacterial systems that have been studied this way.  相似文献   

5.
6.
In higher plants, histidine-aspartate phosphorelays (two-component system) are involved in hormone signaling and stress responses. In these systems, histidine-containing phosphotransfer (HPt) proteins mediate the signal transmission from sensory histidine kinases to response regulators, including integration of several signaling pathways or branching into different pathways. We have determined the crystal structure of a maize HPt protein, ZmHP2, at 2.2 A resolution. ZmHP2 has six alpha-helices with a four-helix bundle at the C-terminus, a feature commonly found in HPt domains. In ZmHP2, almost all of the conserved residues among plant HPt proteins surround this histidine, probably forming the docking interface for the receiver domain of histidine kinase or the response regulator. Arg102 of ZmHP2 is conserved as a basic residue in plant HPt proteins. In bacteria, it is replaced by glutamine or glutamate that form a hydrogen bond to Ndelta atoms of the phospho-accepting histidine. It may play a key role in the complex formation of ZmHP2 with receiver domains.  相似文献   

7.
In Saccharomyces cerevisiae, a multi-component phosphorelay signal transduction pathway mediates cellular responses to environmental stress. A histidine-containing phosphotransfer protein, YPD1, represents a bifurcation point between the SLN1-YPD1-SSK1 pathway responsible for osmotic stress responses and the SLN1-YPD1-SKN7 pathway involved in cell wall biosynthesis and cell cycle control. The phosphorelay protein YPD1 must physically interact with and transfer phosphoryl groups between three homologous response regulator domains, designated SLN1-R1, SSK1-R2, and SKN7-R3. In this comparative study, the molecular basis of interaction was examined between YPD1 and each of the three response regulator domains utilizing alanine scanning mutagenesis combined with a yeast two-hybrid assay. Results from the yeast two-hybrid assay indicate that all three response regulator domains bind to a common area, largely hydrophobic in nature, on the surface of YPD1. We postulate that other YPD1 surface residues surrounding this common docking site are involved in making specific interactions with one or more of the response regulator domains.  相似文献   

8.
Histidine kinases play a major role in signal transduction in prokaryotes for the cellular adaptation to environmental conditions and stresses. Recent progress in the three-dimensional structure determination of two representative members of histidine kinases, EnvZ (class I) and CheA (class II), has revealed common structural features, as well as a kinase catalytic motif topologically similar to those of the ATP-binding domains of a few ATPases. They have also disclosed that there are significant differences in domain organization between class I and II histidine kinases, possibly reflecting their distinct locations, functions and regulatory mechanisms. In spite of this diversity, both class I and II histidine kinases use similar four-helix bundle motifs to relay phosphoryl groups from ATP to regulatory domains of response regulators. The previously known so-called transmitter domain of histidine kinase is further dissected into two domains: a CA (Catalytic ATP-binding) domain and a DHp (Dimerization Histidine phosphotransfer) domain for class I, or a CA domain and an HPt (Histidine-containing Phosphotransfer) domain for class II histidine kinases. From a comparative analysis of the CA domains of EnvZ, CheA and their ATPase homologues, the core elements of the CA domain have been derived. The apparent resemblance between DHp and HPt domains is only superficial, and significant differences between them are discussed.  相似文献   

9.
Histidine-containing phosphotransfer (HPt) proteins play an essential role in multistep histidine-aspartate phosphorelay signal transduction systems in prokaryotes and eukaryotes. The putative HPt protein in Schizosaccharomyces pombe, Mpr1p (also known as Spy1p), is a 295 amino acid protein that appears to be composed of more than one functional domain. The amino acid sequence of the N-terminal region of Mpr1p lacks homology to other known proteins, whereas the C-terminal domain is predicted to have structural similarity to the Ypd1p HPt protein from Saccharomyces cerevisiae. This study provides both in vitro and in vivo evidence that the C-terminal domain of Mpr1p indeed functions as an HPt protein in shuttling phosphoryl groups from one response regulator domain to another. Furthermore, we find that various deletions of the N-terminal region diminish both the phosphotransfer activity of Mpr1p and its affinity for response regulator domains, suggesting a possible role for the N-terminal domain in HPt-response regulator domain interactions.  相似文献   

10.
To study the Populus response to an osmotic stress, we have isolated one cDNA encoding a histidine-aspartate kinase (HK1) and four cDNAs encoding histidine-containing phosphotransfer proteins (HPts), HPt1-4. The predicted HK1 protein shares a typical structure with ATHK1 and SLN1 osmosensors. The 4 HPTs are characterized by the histidine phosphotransfer domain. We have shown that HK1 is upregulated during an osmotic stress in hydroponic culture. We have detected an interaction between HK1 and HPt2, using the yeast two-hybrid system. These results suggest the existence of a multi-step phosphorelay pathway probably involved in osmotic stress sensing in Populus.  相似文献   

11.
Mo G  Zhou H  Kawamura T  Dahlquist FW 《Biochemistry》2012,51(18):3786-3798
In the bacterial chemotaxis two-component signaling system, the histidine-containing phosphotransfer domain (the "P1" domain) of CheA receives a phosphoryl group from the catalytic domain (P4) of CheA and transfers it to the cognate response regulator (RR) CheY, which is docked by the P2 domain of CheA. Phosphorylated CheY then diffuses into the cytoplasm and interacts with the FliM moiety of the flagellar motors, thereby modulating the direction of flagellar rotation. Structures of various histidine phosphotransfer domains (HPt) complexed with their cognate RR domains have been reported. Unlike the Escherichia coli chemotaxis system, however, these systems lack the additional domains dedicated to binding to the response regulators, and the interaction of an HPt domain with an RR domain in the presence of such a domain has not been examined on a structural basis. In this study, we used modern nuclear magnetic resonance techniques to construct a model for the interaction of the E. coli CheA P1 domain (HPt) and CheY (RR) in the presence of the CheY-binding domain, P2. Our results indicate that the presence of P2 may lead to a slightly different relative orientation of the HPt and RR domains versus those seen in such complex structures previously reported.  相似文献   

12.
Shrivastava R  Ghosh AK  Das AK 《FEBS letters》2007,581(9):1903-1909
The two-component signal transduction system from Mycobacterium tuberculosis bears a unique three-protein system comprising of two putative histidine kinases (HK1 and HK2) and one response regulator TcrA. By sequence analysis, HK1 is found to be an adenosine 5'-triphosphate (ATP) binding protein, similar to the nucleotide-binding domain of homologous histidine kinases, and HK2 is a unique histidine containing phosphotransfer (HPt)-mono-domain protein. HK1 is expected to interact with and phosphorylate HK2. Here, we show that HK1 binds 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate monolithium trisodium salt and ATP with a 1:1 stoichiometric ratio. The ATPase activity of HK1 in the presence of HK2 was measured, and phosphorylation experiments suggested that HK1 acts as a functional kinase and phosphorylates HK2 by interacting with it. Further phosphorylation studies showed transfer of a phosphoryl group from HK2 to the response regulator TcrA. These results indicate a new mode of interaction for phosphotransfer between the two-component system proteins in bacteria.  相似文献   

13.
The x-ray crystal structure of the P1 or H domain of the Salmonella CheA protein has been solved at 2.1-A resolution. The structure is composed of an up-down up-down four-helix bundle that is typical of histidine phosphotransfer or HPt domains such as Escherichia coli ArcB(C) and Saccharomyces cerevisiae Ypd1. Loop regions and additional structural features distinguish all three proteins. The CheA domain has an additional C-terminal helix that lies over the surface formed by the C and D helices. The phosphoaccepting His-48 is located at a solvent-exposed position in the middle of the B helix where it is surrounded by several residues that are characteristic of other HPt domains. Mutagenesis studies indicate that conserved glutamate and lysine residues that are part of a hydrogen-bond network with His-48 are essential for the ATP-dependent phosphorylation reaction but not for the phosphotransfer reaction with CheY. These results suggest that the CheA-P1 domain may serve as a good model for understanding the general function of HPt domains in complex two-component phosphorelay systems.  相似文献   

14.
15.
The Rcs signaling system in Escherichia coli controls a variety of physiological functions, including capsule synthesis, cell division and motility. The activity of the central regulator RcsB is modulated by phosphorylation through the sensor kinases YojN and RcsC, with the YojN histidine phosphotransferase (HPt) domain representing the catalytic unit that coordinates the potentially reversible phosphotransfer reaction between the receiver domains of the RcsB and RcsC proteins. Heteronuclear high-resolution NMR spectroscopy was employed to determine the solution structure of the YojN-HPt domain and to map the interaction with its two cognate receiver domains. The solution structure of YojN-HPt exhibits a well-ordered and rigid protein core consisting of the five helices alphaI to alphaV. The helices alphaII to alphaV form a four-helix bundle signature motif common to proteins of similar function, and helix alphaI forms a cap on top of the bundle. The helix alphaII is separated by a proline induced kink into two parts with different orientations and dynamic behavior that is potentially important for complex formation with other proteins. The N-terminal part of YojN-HPt spanning the first 26 amino acid residues seems to contain neither a regular secondary structure nor a stable tertiary structure and is disordered in solution. The identified YojN-HPt recognition sites for the regulator RcsB and for the isolated receiver domain of the RcsC kinase largely overlap in defined regions of the helices alphaII and alphaIII, but show significant differences. Using the residues with the largest chemical shift changes obtained from titration experiments, we observed a dissociation constant of approximately 200microM for YojN-HPt/RcsC-PR and of 40microM for YojN-HPt/RcsB complexes. Our data indicate the presence of a recognition area in close vicinity to the active-site histidine residue of HPt domains as a determinant of specificity in signal-transduction pathways.  相似文献   

16.
An Escherichia coli sensor kinase, ArcB, transfers a phosphoryl group to a partner response regulator in response to anaerobic conditions. Multidimensional NMR techniques were applied to determine the solution structure of the histidine-containing phosphotransfer signaling domain of ArcB (HPt(ArcB)), which has a phosphorylation site, His717. The backbone dynamics were also investigated by analyses of the (15)N relaxation data and amide hydrogen exchange rates. Furthermore, the protonation states of the histidine imidazole rings were characterized by means of (1)H and (15)N chemical shifts at various pHs. The determined solution structure of HPt(ArcB) contains five helices and forms a four-helix bundle motif like other HPt domains. The obtained order parameters, S (2), [(1)H]-(15)N heteronuclear NOE values, and chemical exchange parameters, R(ex), showed that the alpha-helical regions of HPt(ArcB) are rigid on both picosecond to nanosecond and microsecond to millisecond time scales. On the other hand, helix D, which contains His717, exhibited low protection factors of less than 4000, indicating the presence of fluctuations on a slower time scale in helix D. These results suggest that HPt(ArcB) may undergo a small conformational change in helix D upon phosphorylation. It was also shown that the imidazole ring of His717 has a pK(a) value of 6.76, which is similar to that of a solvent-exposed histidine imidazole ring, and that a pair of deprotonated neutral tautomers are rapidly exchanged with each other. This is consistent with the solution structure of HPt(ArcB), in which the imidazole ring of His717 is exposed to the solvent.  相似文献   

17.
His to Asp phosphorelay signal transduction mechanisms involve three types of widespread signaling components: a sensor His-kinase, a response regulator, and a histidine-containing phosphotransfer (HPt) domain. In Arabidopsis, several sensor His-kinases have recently been discovered (e.g., ETR1 and CKI1) through extensive genetic studies. Furthermore, a recent search for response regulators in this higher plant revealed that it possesses a group of response regulators (ARR-series), each of which exhibits the phospho-accepting receiver function. However, no signal transducer containing the HPt domain has been reported. Here we identify three distinct Arabidopsis genes (AHP1 to AHP3), each encoding a signal transducer containing a HPt domain. Both in vivo and in vitro evidence that each AHP can function as a phospho-transmitting HPt domain with an active histidine site was obtained by employing both the Escherichia coli and yeast His-Asp phosphorelay systems. It was demonstrated that AHP1 exhibits in vivo ability to complement a mutational lesion of the yeast YPD1 gene, encoding a typical HPt domain involved in an osmosensing signal transduction. It was also demonstrated that AHPs can interact in vitro with ARRs through the His-Asp phosphotransfer reaction. It was thus suggested that the uncovered sensors-AHPs-ARRs lineups may play important roles in propagating environmental stimuli through the multistep His-Asp phosphorelay in Arabidopsis.  相似文献   

18.
The Escherichia coli sensory kinase, ArcB, possesses a histidine-containing phosphotransfer (HPt) domain, which is implicated in the His-Asp multistep phosphorelay. We searched for a presumed phosphohistidine phosphatase, if present, which affects the function of the HPt domain through its dephosphorylation activity. Using in vivo screening, we first identified a gene that appeared to interfere with the His-Asp phosphorelay between the HPt domain and the receiver domain of OmpR, provided that the gene product was expressed through a multicopy plasmid. The cloned gene (named sixA ) was found to encode a protein consisting of 161 amino acids, which has a noticeable sequence motif, an arginine–histidine–glycine (RHG) signature, at its N-terminus. Such an RHG signature, which presumably functions as a nucleophilic phosphoacceptor, was previously found in a set of divergent enzymes, including eukaryotic fructose-2,6-bisphosphatase, E. coli periplasmic phosphatase and E. coli glucose-1-phosphate phosphatase, and ubiquitous phosphoglycerate mutase. Otherwise, the entire amino acid sequences of none of these enzymes resembles that of SixA. It was demonstrated in vitro that the purified SixA protein exhibited the ability to release the phosphoryl group from the HPt domain of ArcB, but the mutant protein lacking the crucial histidine residue in the RHG signature did not. Evidence was also provided that a deletion mutation of sixA on the chromosome affected the in vivo phosphotransfer signalling. These results support the view that SixA is capable of functioning as a phosphohistidine phosphatase that may be implicated in the His-Asp phosphorelay through regulating the phosphorylation state of the HPt domain.  相似文献   

19.
Two-component systems (TCSs) are the major signalling pathway in bacteria and represent potential drug targets. Among the 11 paired TCS proteins present in Mycobacterium tuberculosis H37Rv, the histidine kinases (HKs) Rv0600c (HK1) and Rv0601c (HK2) are annotated to phosphorylate one response regulator (RR) Rv0602c (TcrA). We wanted to establish the sequence-structure-function relationship to elucidate the mechanism of phosphotransfer using in silico methods. Sequence alignments and codon usage analysis showed that the two domains encoded by a single gene in homologous HKs have been separated into individual open-reading frames in M. tuberculosis. This is the first example where two incomplete HKs are involved in phosphorylating a single RR. The model shows that HK2 is a unique histidine phosphotransfer (HPt)-mono-domain protein, not found as lone protein in other bacteria. The secondary structure of HKs was confirmed using "far-UV" circular dichroism study of purified proteins. We propose that HK1 phosphorylates HK2 at the conserved H131 and the phosphoryl group is then transferred to D73 of TcrA.  相似文献   

20.
Common histidine-to-aspartate (His-to-Asp) phosphorelay signaling systems involve three types of signaling components: a sensor His kinase, a response regulator, and a histidine-containing phosphotransfer (HPt) protein. In the fission yeast Schizosaccharomyces pombe, two response regulators, Mcs4 and Prr1, have been identified recently, and it was shown that they are involved in the signal transduction implicated in stress responses. Furthermore, Mcs4 appears to be involved in mitotic cell-cycle control. However, neither the HPt phosphotransmitter nor His kinase has been characterized in S. pombe. In this study, we identified a gene encoding an HPt phosphotransmitter, named Spy1 (S. pombe YPD1-like protein). The spy1(+) gene showed an ability to complement a mutational lesion of the Saccharomyces cerevisiae YPD1 gene, which is involved in an osmosensing signal transduction. The result from yeast two-hybrid analysis indicated that Spy1 interacts with Mcs4. To gain insight into the function of Spy1, a series of genetic analyses were conducted. The results provided evidence that Spy1, together with Mcs4, plays a role in regulation of the G(2)/M cell cycle progression. Spy1-deficient cells appear to be precocious in the entry to M phase. In the proposed model, Spy1 modulates Mcs4 in a negative manner, presumably through a direct His-to-Asp phosphorelay, operating upstream of the Sty1 mitogen-activated protein kinase cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号