首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breeding a model plant that encompasses individual traits thought to enhance yield potential, known as ideotype breeding, has traditionally focused on phenotypic selection of plants with desirable morphological traits. Broadening this breeding method to the molecular level through the use of molecular markers would avoid the environmental interactions associated with phenotypic selection. A population of 110 F5 recombinant inbred lines (RILs), derived from the cross between WO3391 and 'OAC Speedvale', was used to develop a genetic linkage map consisting of 105 random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and sequence-tagged site (STS) markers. The map has a total length of 641 cM distributed across 8 linkage groups (LGs). Five of them were aligned on the core linkage map of bean. Twenty-one quantitative trait loci (QTLs) were identified over three environments for eight agronomic and architectural traits previously defined for a bean (Phaseolus vulgaris L.) ideotype. The QTLs were mapped to seven LGs with several regions containing QTLs for multiple traits. At least one QTL was located for each trait and a maximum of four were associated with lodging. Total explained phenotypic variance ranged from 10.6% for hypocotyl diameter to 45.4% for maturity. Some of the QTLs identified will be useful for early generation selection of tall, upright, high-yielding lines in a breeding program.  相似文献   

2.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

3.
Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Lab., is one of the most devastating diseases of chickpea (Cicer arietinum L.) worldwide. Research was conducted to map genetic factors for resistance to ascochyta blight using a linkage map constructed with 144 simple sequence repeat markers and 1 morphological marker (fc, flower colour). Stem cutting was used to vegetatively propagate 186 F2 plants derived from a cross between Cicer arietinum L. 'ICCV96029' and 'CDC Frontier'. A total of 556 cutting-derived plants were evaluated for their reaction to ascochyta blight under controlled conditions. Disease reaction of the F1 and F2 plants demonstrated that the resistance was dominantly inherited. A Fain's test based on the means and variances of the ascochyta blight reaction of the F3 families showed that a few genes were segregating in the population. Composite interval mapping identified 3 genomic regions that were associated with the reaction to ascochyta blight. One quantitative trait locus (QTL) on each of LG3, LG4, and LG6 accounted for 13%, 29%, and 12%, respectively, of the total estimated phenotypic variation for the reaction to ascochyta blight. Together, these loci controlled 56% of the total estimated phenotypic variation. The QTL on LG4 and LG6 were in common with the previously reported QTL for ascochyta blight resistance, whereas the QTL on LG3 was unique to the current population.  相似文献   

4.
Restriction fragment length polymorphism (RFLP)-based genetic linkage maps allow us to dissect the genetic control of quantitative traits (QT) by locating individual quantitative trait loci (QTLs) on the linkage map and determining their type of gene action and the magnitude of their contribution to the phenotype of the QT. We have performed such an analysis for two traits in common bean, involving interactions between the plant host and bacteria, namely Rhizobium nodule number (NN) and resistance to common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli. Analyses were conducted in the progeny of a cross between BAT93 (fewer nodules; moderately resistant to CBB) and Jalo EEP558 (more nodules; susceptible to CBB). An RFLP-based linkage map for common bean based on 152 markers had previously been derived in the F(2) of this cross. Seventy F(2)-derived F(3) families were inoculated in separate greenhouse experiments with Rhizobium tropici strain UMR1899 or X. c. pv. phaseoli isolate isolate W18. Regression and interval mapping analyses were used to identify genomic regions involved in the genetic control of these traits. These two methods identified the same genomic regions for each trait, with a few exceptions. For each trait, at least four putative QTLs were identified, which accounted for approximately 50% and 75% of the phenotypic variation in NN and CBB resistance, respectively. A chromosome region on linkage group D7 carried factor(s) influencing both traits. In all other cases, the putative QTLs affecting NN and CBB were located in different linkage groups or in the same linkage group, but far apart (more than 50 cM). Both BAT93 and Jalo EEP558 contributed alleles associated with higher NN, whereas CBB resistance was always associated with BAT93 alleles. Further investigations are needed to determine whether the QTLs for NN and CBB on linkage group D7 represent linked genes or the same gene with pleiotropic effects. Identification of the QTLs raises the possibility of initiating map-based cloning and marker-assisted selection for these traits.  相似文献   

5.
Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a major disease of economically important forage crops such as ryegrasses and fescues. Targeted breeding based on seedling inoculation has resulted in cultivars with considerable levels of resistance. However, the mechanisms of inheritance of resistance are poorly understood and further breeding progress is difficult to obtain. This study aimed to assess the relevance of the seedling screening in the glasshouse for adult plant resistance in the field and to investigate genetic control of resistance to bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.). A mapping population consisting of 306 F1 individuals was established and resistance to bacterial wilt was assessed in glasshouse and field experiments. Highly correlated data (r = 0.67–0.77, P < 0.01) between trial locations demonstrated the suitability of glasshouse screens for phenotypic selection. Analysis of quantitative trait loci (QTL) based on a high density genetic linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed a single major QTL on linkage group (LG) 4 explaining 67% of the total phenotypic variance (Vp). In addition, a minor QTL was observed on LG 5. Field experiments confirmed the major QTL on LG 4 to explain 43% (in 2004) to 84% (in 2005) of Vp and also revealed additional minor QTLs on LG 1, LG 4 and LG 6. The identified QTLs and the closely linked markers represent important targets for marker-assisted selection of Italian ryegrass.  相似文献   

6.
ABSTRACT: BACKGROUND: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. RESULTS: QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. CONCLUSIONS: The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.  相似文献   

7.
A. Zhan  J. Hu  X. Hu  M. Hui  M. Wang  W. Peng  X. Huang  S. Wang  W. Lu  C. Sun  Z. Bao 《Animal genetics》2009,40(6):821-831
We constructed the microsatellite-based linkage maps using 318 markers typed in two F1 outbred families of Zhikong scallop ( Chlamys farreri ). The results showed an extremely high proportion (56.2%) of non-amplifying null alleles and a high ratio (30%) of segregation distortion. By aligning different individual-based linkage maps, 19 linkage groups were identified, which are consistent with the haploid chromosome number of Zhikong scallop. The integrated linkage map contains 154 markers covering 1561.8 cM with an average intermarker spacing of 12.3 cM and 77.0% of genome coverage. We found that the heterogeneity in recombination rate was not determined by sexes but by different individuals on 18 linkage regions. The phenotypic marker of general shell colour was placed on LG4, which was flanked by microsatellite markers CFLD064 and CFBD055 . Four size-related traits including shell length (SL), shell width (SW), shell height (SH) and gross weight (GW) were analysed to identify the putative quantitative trait loci (QTL). Under the half-sib model, using dam as common parent, three, two, two and one QTL affecting SL, SW, SH and GW exceeded the genome-wide thresholds respectively. While using sir as common parent, a larger number of QTL were detected for these four traits: four, five, three and two for SL, SW, SH and GW respectively. The single QTL explained 3.7–19.2% of the phenotypic variation. The linkage map and the QTL associated with economic traits will provide useful information for marker-assisted selection of Zhikong scallop.  相似文献   

8.
A rye doubled haploid (DH) mapping population (Amilo × Voima) segregating for pre-harvest sprouting (PHS) was generated through anther culture of F1 plants. A linkage map was constructed using DHs, to our knowledge, for the first time in rye. The map was composed of 289 loci: amplified fragment length polymorphism (AFLP), microsatellite, random amplified polymorphic DNA (RAPD), retrotransposon-microsatellite amplified polymorphism (REMAP), inter-retrotransposon amplified polymorphism (IRAP), inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers, and extended altogether 732 cM (one locus in every 2.5 cM). All of the seven rye chromosomes and four unplaced groups were formed. Distorted segregation of markers (P ≤ 0.05) was detected on all chromosomes. One major quantitative trait locus (QTL) affecting α-amylase activity was found, which explained 16.1% of phenotypic variation. The QTL was localized on the long arm of chromosome 5R. Microsatellites SCM74, RMS1115, and SCM77, nearest to the QTL, can be used for marker-assisted selection as a part of a rye breeding program to decrease sprouting damage.  相似文献   

9.
Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. Combining QTL is the current strategy for improving resistance, but interactions among different QTL are unknown. We examined the interaction between two independent QTL present in dry bean breeding line XAN 159. The QTL were studied in a near isogenic population consisting of 120 BC(6):F(2) plants. Each BC(6):F(2) plant was evaluated for disease reaction at several time points after pathogen inoculation and the dominant SCAR markers linked with QTL on linkage groups B6 (BC420 ~ QTL) and B8 (SU91 ~ QTL) were interpreted as codominant markers using real time PCR assays. This enabled assignment of BC(6):F(2) plants to all nine possible genotypes. Reaction to CBB in BC(6):F(2) plants was characterized by an epistatic interaction between BC420 and SU91 such that: 1) the expression of BC420 was epistatically suppressed by a homozygous recessive su91//su91 genotype; 2) SU91//SU91 and SU91//su91 genotypes conditioned an intermediate disease reaction when homozygous recessive for bc420//bc420; and 3) the highest level of disease resistance was conferred by genotypes with at least a single resistance allele at both QTL (BC420//-; SU91//-). Segregation for resistance among BC(6):F(3) plants derived from BC(6):F(2) plants that were heterozygous for both QTL did not deviate significantly from expected ratios of 9 resistant: 3 moderately resistant: 4 susceptible. This is consistent with a recessive epistatic model of inheritance between two loci. These results indicate breeders will realize greatest gains in resistance to CBB by selecting breeding materials that are fixed for both QTL. This is a first report of a qualitative digenic model of inheritance discerning an interaction between two QTL conditioning disease resistance in plants.  相似文献   

10.
Scab, caused by the fungal pathogen Venturia inaequalis, is the most common disease of cultivated apple (Malus xdomestica). The fungal races 6 and 7 have now overcome the major resistance gene Vf, which is widely used in apple breeding programmes. New breeding strategies to achieve durable resistance are thus necessary. The aim of this study was to determine the genetic basis of quantitative resistance of the apple cultivar 'Dülmener Rosenapfel', known to be scab resistant under different environmental conditions. An F1 progeny derived from the cross between the susceptible cultivar 'Gala' and 'Dülmener Rosenapfel' was tested in a greenhouse with a multi-isolate inoculum of V. inaequalis. Rvi14, a new major gene that conditions a chlorotic-type reaction, was mapped on linkage group (LG) 6 in a genomic region not known to be involved in disease resistance. A further three quantitative trait loci (QTL) for resistance were identified. One co-localized with Rvi14 on LG6, whereas the remaining two were detected on LG11 and LG17, in genomic regions already reported to carry broad-spectrum QTL in other genetic backgrounds. Since a selective genotyping approach was used to detect QTL, an expectation-maximization (EM) computation was used to estimate the corrected QTL contributions to phenotypic variation and was validated by entire progeny genotyping.  相似文献   

11.
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with “broad and thin blade” characteristics and another with “long and narrow blade” characteristics, were applied in the hybridization to yield the F2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for “FL,” explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait “FW,” accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.  相似文献   

12.
Tsai  S.M.  Nodari  R.O.  Moon  D.H.  Camargo  L.E.A.  Vencovsky  R.  Gepts  P. 《Plant and Soil》1998,204(1):135-145
A recently developed bean RFLP linkage map was used to identify genetic elements affecting quantitative trait loci (QTLs) in two contrasting common bean genotypes, BAT-93 and Jalo EEP558, under two levels of mineral nitrogen: low – 0.25 mM NH4NO3 and a high – 6 mM NH4NO3. QTLs affecting nodule number (NN) and response to Xanthomonas campestris bv. phaseoli, which causes common bacterial blight (CBB) were identified and mapped. Analyses of 70 F2-derived F3 families, using the F1, the two parents, and a nodulation-defective mutant (Nod-) inoculated with R. tropici UM1899 under both levels of N showed significant differences (P#60;0.0001) among the F3 families for NN.Under low N, three genomic regions influenced both traits, with seven linked markers. In three of the six regions influencing NN, higher NN was associated with the Jalo EEP-558 allele, whereas in only two regions was the BAT-93 allele associated with higher NN. One-way analysis of variance, with each marker as the independent variable and NN as the dependent variable, and interval mapping analysis identified four QTLs, which accounted for 45% of the total variation, and two additional QTLs near to yet unassigned loci. In linkage group D7, one QTL mapped to the same region as a QTL for CBB.Under high N, three additional regions were linked to NN, one where the BAT-93 allele was closely associated with CH18 (chitinase), and the others where the Jalo EEP-558 allele was associated with CHS (chalcone synthetase) and PAL-1 (phenylalanine ammonia lyase). Four regions for CBB were mapped adjacent to or in the same region as a QTL for NN. Thus, N showed dual and opposite effects on the expression of NN and CBB. Analysis of these RFLP markers revealed these hidden favorable alleles and can serve as an indirect selection tool to increase NN and resistance to CBB.  相似文献   

13.
Common bacterial blight (CBB) is a major disease of common bean (Phaseolus vulgaris L.) worldwide. Genetic resistance is the most effective and environmentally safe approach for controlling CBB, and identification of resistance quantitative trait loci (QTL) can improve response to selection when breeding for CBB resistance. Interactions of CBB resistance QTL and pathogen isolates with different levels of aggressiveness were studied using an F 4:5 recombinant inbreed line (RIL) population, derived from a cross between the susceptible cultivar “Sanilac” and the resistant breeding line “OAC 09-3.” Disease phenotyping was performed under field and growth room conditions using multiple bacterial isolates with differential levels of aggressiveness. QTL analysis was performed with 237 molecular markers. The effect of pathogen isolate on the average phenotypic value in the RIL population and the interaction of RILs and the pathogen isolates were highly significant. Two QTL underlying CBB resistance were detected on Pv08 and Pv03. A major QTL (R 2 p between 15 and 56%) was identified in a 5-cM (380 kbp) interval in the distal end of the long arm of Pv08. This genomic region was significantly associated with multiple disease evaluation traits in field and growth room assays and against different isolates of the pathogen, which included the previously known CBB marker SU91. A new QTL on Pv03 (Xa3.3SO), associated with the PvSNP85p745405 allele from the susceptible parent, Sanilac, appeared to be an isolate-specific QTL against the aggressive fuscans isolate ISO118. Interaction between the SU91 and Xa3.3SO QTL resulted in a significant reduction in mean disease severity for almost all disease evaluation traits after plants were challenged with the isolate ISO118. The 7.92 and 7.79% diseased areas in RILs with both QTL, compared with 14.92 and 13.81% in RILs without either in test1 and in test2 quantified by image analysis, showed a 44 and 47% reduction of percent diseased areas, indicating that the two QTL interact to limit the expansion of CBB symptoms after infection by ISO118. The information obtained in this study indicates that while the broad-spectrum SU91 QTL is useful in breeding programs, isolate-specific QTL, such as Xa3.3SO, will aid in breeding bean varieties with enhanced resistance against aggressive regional isolates.  相似文献   

14.
Molecular mapping of Fusarium head blight (FHB) resistance quantitative trait loci (QTL) and marker-assisted selection of these QTL will aid in the development of resistant cultivars. Most reported FHB resistance QTL are from 'Sumai 3' and its derivatives. 'Wangshuibai' is a FHB-resistant landrace that originated from China and is not known to be related to 'Sumai 3'. A mapping population of 139 F(5:6) recombinant inbred lines was developed from a cross of 'Wangshuibai' and 'Wheaton'. This population was developed to map the FHB-resistant QTL in 'Wangshuibai' and was evaluated twice for Type II FHB resistance. A total of 1196 simple sequence repeat and amplified fragment length polymorphism markers were screened on this population, and four FHB resistance QTL were detected. A major QTL near the end of 3BS explained 37.3% of the phenotypic variation. Another QTL on 3BS, located close to the centromere, explained 7.4% of the phenotypic variation. Two additional QTL on 7AL and 1BL explained 9.8% and 11.9% of the phenotypic variation, respectively. The simple sequence repeat and amplified fragment length polymorphism markers closely linked to these QTL may be useful for stacking QTL from 'Wangshuibai' and other sources to develop cultivars with transgressive FHB resistance.  相似文献   

15.

Background and Aims

The Asian genus Vigna, to which four cultivated species (rice bean, azuki bean, mung bean and black gram) belong, is suitable for comparative genomics. The aims were to construct a genetic linkage map of rice bean, to identify the genomic regions associated with domestication in rice bean, and to compare these regions with those in azuki bean.

Methods

A genetic linkage map was constructed by using simple sequence repeat and amplified fragment length polymorphism markers in the BC1F1 population derived from a cross between cultivated and wild rice bean. Using this map, 31 domestication-related traits were dissected into quantitative trait loci (QTLs). The genetic linkage map and QTLs of rice bean were compared with those of azuki bean.

Key Results

A total of 326 markers converged into 11 linkage groups (LGs), corresponding to the haploid number of rice bean chromosomes. The domestication-related traits in rice bean associated with a few major QTLs distributed as clusters on LGs 2, 4 and 7. A high level of co-linearity in marker order between the rice bean and azuki bean linkage maps was observed. Major QTLs in rice bean were found on LG4, whereas major QTLs in azuki bean were found on LG9.

Conclusions

This is the first report of a genetic linkage map and QTLs for domestication-related traits in rice bean. The inheritance of domestication-related traits was so simple that a few major QTLs explained the phenotypic variation between cultivated and wild rice bean. The high level of genomic synteny between rice bean and azuki bean facilitates QTL comparison between species. These results provide a genetic foundation for improvement of rice bean; interchange of major QTLs between rice bean and azuki bean might be useful for broadening the genetic variation of both species.  相似文献   

16.
Two quantitative trait loci (QTLs), (QTLAR1 and QTLAR2) associated with resistance to ascochyta blight, caused by Ascochyta rabiei, have been identified in a recombinant inbred line population derived from a cross of kabuli×desi chickpea. The population was evaluated in two cropping seasons under field conditions and the QTLs were found to be located in two different linkage groups (LG4a and LG4b). LG4b was saturated with RAPD markers and four of them associated with resistance were sequenced to give sequence characterized amplified regions (SCARs) that segregated with QTLAR2. This QTL explained 21% of the total phenotypic variation. However, QTLAR1, located in LG4a, explained around 34% of the total phenotypic variation in reaction to ascochyta blight when scored in the second cropping season. This LG4a region only includes a few markers, the flower colour locus (B/b), STMS GAA47, a RAPD marker and an inter-simple-sequence-repeat and corresponds with a previously reported QTL. From the four SCARs tagging QTLAR2, SCAR (SCY17590) was co-dominant, and the other three were dominant. All SCARs segregated in a 1:1 (presence:absence) ratio and the scoring co-segregated with their respective RAPD markers. QTLAR2 on LG4b was mapped in a highly saturated genomic region covering a genetic distance of 0.8 cM with a cluster of nine markers (three SCARs, two sequence-tagged microsatellite sites (STMS) and four RAPDs). Two of the four SCARs showed significant alignment with genes or proteins related to disease resistance in other species and one of them (SCK13603) was sited in the highly saturated region linked to QTLAR2. STMS TA72 and TA146 located in LG4b were described in previous maps where QTL for blight resistance were also localized in both inter and intraspecific crosses. These findings may improve the precision of molecular breeding for QTLAR2 as they will allow the choice of as much polymorphism as possible in any population and could be the starting point for finding a candidate resistant gene for ascochyta blight resistance in chickpea.  相似文献   

17.
A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F1 individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F1 progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30–38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne.  相似文献   

18.
Y Bai  T E Michaels  K P Pauls 《Génome》1997,40(4):544-551
Seven hundred and fifty-six random primers were screened with bulks of genomic DNA from common bacterial blight (CBB) resistant and susceptible bean plants. The plants were from a breeding population derived from an interspecific cross between Phaseolus acutifolius and Phaseolus vulgaris. Four RAPD markers, named R7313, RE416, RE49, and R4865, were found to be significantly associated with CBB resistance in this population. Forty-nine molecular markers segregating in the population were clustered into 8 linkage groups by a MAPMAKER linkage analysis. The largest linkage group was 140 cM long and contained 25 marker loci, including marker R4865. Markers R7313, RE416, and RE49 were clustered on another linkage group. A regression analysis indicated that the markers in these two groups together accounted for 81% of the variation in CBB resistance in the population. The addition of another marker, M56810, which was not individually associated with CBB resistance, increased the total contribution to the trait to 87%.  相似文献   

19.
Linolenic acid and seed lipoxygenases are associated with off flavours in soybean products. F5 recombinant inbred lines (RILs) from a cross between a low linolenic acid line (RG10) and a seed lipoxygenase-free line (OX948) were genotyped for simple sequence repeats (SSR), random amplified polymorphic DNA (RAPD), sequence-tagged sites (STS), and cleaved amplified polymorphic sequence (CAPS) markers and evaluated for seed and agronomic traits at 3 Ontario locations in 2 years. One hundred twenty markers covering 1247.5 cM were mapped to 18 linkage groups (LGs) in the soybean composite genetic map. Seed lipoxygenases L-1 and L-2 mapped as single major genes to the same location on LG G13-F. L-3 mapped to LG G11-E. This is the first report of a map position for L-3. A major quantitative trait locus (QTL) associated with reduced linolenic acid content was identified on LG G3-B2. QTLs for 12 additional seed and agronomic traits were detected. Linolenic acid content, linoleic acid content, yield, seed mass, protein content, and plant height QTL were present in at least 4 of 6 environments. Three to 8 QTLs per trait were detected that accounted for up to 78% of total variation. Linolenic acid and lipoxygenase loci did not overlap yield QTL, suggesting that it should be possible to develop high-yielding lines resistant to oxidative degradation by marker-assisted selection (MAS).  相似文献   

20.
A major quantitative trait loci (QTL) conditioning common bacterial blight (CBB) resistance in common bean (Phaseolus vulgaris L.) lines HR45 and HR67 was derived from XAN159, a resistant line obtained from an interspecific cross between common bean lines and the tepary bean (P. acutifolius L.) line PI319443. This source of CBB resistance is widely used in bean breeding. Several other CBB resistance QTL have been identified but none of them have been physically mapped. Four molecular markers tightly linked to this QTL have been identified suitable for marker assisted selection and physical mapping of the resistance gene. A bacterial artificial chromosome (BAC) library was constructed from high molecular weight DNA of HR45 and is composed of 33,024 clones. The size of individual BAC clone inserts ranges from 30 kb to 280 kb with an average size of 107 kb. The library is estimated to represent approximately sixfold genome coverage. The BAC library was screened as BAC pools using four PCR-based molecular markers. Two to seven BAC clones were identified by each marker. Two clones were found to have both markers PV-tttc001 and STS183. One preliminary contig was assembled based on DNA finger printing of those positive BAC clones. The minimum tiling path of the contig contains 6 BAC clones spanning an estimated size of 750 kb covering the QTL region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号