首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble enzymes from sage (Salvia officinalis) and tansy (Tanacetum vulgare), which catalyze the cyclization of geranyl pyrophosphate and the presumptive intermediate linalyl pyrophosphate to the (+) and (-) enantiomers, respectively, of 2-bornyl pyrophosphate, were employed to evaluate mechanistic alternatives for the pyrophosphate migration in monoterpene cyclization reactions. Separate incubation of [1-3H2,alpha-32P]- and [1-3H2,beta- 32P]geranyl and (+/-)-linalyl pyrophosphates with partially purified preparations of each enantiomer-generating cyclase gave [3H, 32P]bornyl pyrophosphates, which were selectively hydrolyzed to the corresponding bornyl phosphates. Measurement of 3H:32P ratios of these monophosphate esters established that two ends of the pyrophosphate moiety retained their identifies in the cyclization of both precursors to both products and also indicated that there was no appreciable exchange with exogenous inorganic pyrophosphate in the reaction. Subsequent incubations of each cyclase with [8,9-14C,1-18O]geranyl pyrophosphate and with (1E)-(+/-)-[1-3H,3-18O]linalyl pyrophosphate gave the appropriate (+)- or (-)-bornyl pyrophosphates, which were hydrolyzed in situ to the corresponding borneols. Analysis of the derived benzoates by mass spectrometry demonstrated each of the product borneols to possess an 18O enrichment essentially identical with that of the respective acyclic precursor. The absence of P alpha-P beta interchange and the complete lack of positional 18O isotope exchange of the pyrophosphate moiety are compatible with tight ion pairing of intermediates in the coupled isomerization-cyclization of geranyl pyrophosphate and establish a remarkably tight restriction on the motion of the transiently generated pyrophosphate anion with respect to its cationic terpenyl reaction partner.  相似文献   

2.
Thiamine pyrophosphate-ATP phosphoryltransferase, the enzyme that catalyzes the synthesis of thiamine triphosphate, has been found in the supernatant fraction of rat liver. The substrate for the enzyme is endogenous, bound thiamine pyrophosphate, since the addition of exogenous thiamine pyrophosphate had no effect. Thus, when a rat liver supernatant was incubated with gamma-labelled [32P]ATP, thiamine [32P]triphosphate was formed whereas the incubation of thiamine [32P]pyrophosphate with ATP did not produce thiamine [32P]triphosphate. The endogenous thiamine pyrophosphate was found to be bound to a high molecular weight protein which comes out in the void volume of Sephadex G-75, and is not dialyzable. The activity that catalyzes the formation of thiamine triphosphate has an optimum pH between 6 and 6.5, a linear time course of thiamine triphosphate synthesis up to 30 min, and is not affected by Ca2+, cyclic GMP and sulfhydryl reagents.  相似文献   

3.
Dolichyl [beta-32P]pyrophosphate ([beta-32P]Dol-P-P) has been prepared chemically to study Dol-P-P phosphatase in calf brain. Calf brain microsomes catalyze the enzymatic release of 32Pi from exogenous [beta-32P]Dol-P-P by a bacitracin-sensitive reaction. [32P]Pyrophosphate was not detected with the water-soluble product even when 1 mM sodium pyrophosphate was added to impede pyrophosphatase activity. A substantial fraction of the Dol-P-P phosphatase activity can be solubilized by treating brain microsomes with 3% Triton X-100. The detergent extracts catalyze the enzymatic release of 32Pi from [beta-32P]Dol-P-P and the conversion of [14C]undecaprenyl pyrophosphate to [14C]undecaprenyl monophosphate. The solubilized Dol-P-P phosphatase activity: 1) is optimal at neutral pH; 2) is inhibited by Mn2+ and stimulated by EDTA; 3) exhibits an apparent Km = 20 microM for Dol-P-P; 4) is competitively inhibited by undecaprenyl pyrophosphate, and 5) is blocked by bacitracin. Solubilized Dol-P-P phosphatase activity differs from Dol-P phosphatase activity present in the same detergent extracts with respect to: 1) thermolability at 50 degrees C, 2) effect of 20 mM EDTA, and 3) sensitivity to phosphate and fluoride ions. These studies describe the chemical synthesis of [beta-32P]Dol-P-P for use in a convenient assay of Dol-P-P phosphatase activity. A procedure for the solubilization of Dol-P-P phosphatase activity from microsomes is presented, and an enzymological comparison indicates that Dol-P-P and Dol-P phosphatase are separate enzymes in calf brain.  相似文献   

4.
Thiamin:ATP pyrophosphotransferase (EC2.7.6.2) activity from soybean (Merr.) seedlings grown for 48 hours was determined by measuring the rate of [2-14C]thiamin incorporation into thiamin pyrophosphate. With partially purified (11-fold) enzyme, optimal activity occurred between pH 7.1 and 7.3, depending on the buffer system that was used. Assays were routinely conducted at a final pH of 8.1 in order to minimize interference from competing reactions. Enzyme activity required the presence of a divalent cation, and a number of nucleoside triphosphates proved to be active as pyrophosphate donors. Apparent Km values of 18.3 millimolar and 4.64 micromolar were obtained for Mg·ATP and thiamin, respectively. Among the compounds tested, pyrithiamin and thiamin pyrophosphate were most effective in inhibiting thiamin pyrophosphotransferase activity. Based on Sephadex G-100 gel filtration, soybean thiamin pyrophosphotransferase has a molecular weight of 49,000.  相似文献   

5.
Thiamin pyrophosphotransferase activity was present in seedling extracts from several monocot and dicot species of agronomic as well as noncultivated plants. Changes in thiamin pyrophosphotransferase activity and thiamin pyrophosphate content were followed for 6 days in soybean (Merr.) seedlings. Maximum enzyme activity occurred 48 to 96 hours from imbibition. Thiamin pyrophosphate content peaked sharply at 36 hours and was preceded by increased thiamin pyrophosphotransferase activity. Addition of pyrithiamin, an inhibitor of in vitro thiamin pyrophosphotransferase activity, to the imbibition medium at various times inhibited subsequent fresh weight gains of soybean seedlings. These results indicated that, although not among the earliest phosphorylation events after initiation of water imbibition by soybean seeds, a substantial increase in thiamin pyrophosphate content did precede the onset of rapid seedling growth and development. Since both enzyme activity and thiamin appear to be available in unimbibed soybean seeds, ATP or other nucleoside triphosphate concentration may represent an important factor in modulating thiamin phosphorylation during early seedling development.  相似文献   

6.
Localization of the ATP binding site on alpha-tubulin   总被引:2,自引:0,他引:2  
The binding site for ATP to tubulin was established by use of the photoaffinity label [gamma-32P]N3ATP. Photolysis of the analog in the presence of tubulin resulted in covalent modification of the protein as revealed by autoradiography of electropherograms. Scanning the autoradiograms showed that the ATP analog was bound mainly to the alpha subunit of the tubulin dimer; the alpha subunit was two to three times more radioactive than was the beta subunit. The location of a particular site on the alpha subunit was further defined by peptide maps. The alpha and beta subunits from affinity-labeled tubulin were separated and digested with Staphylococcus protease. Radioactivity was found predominantly in one peptide band from the alpha subunit. The location of the [gamma-32P]N3ATP binding site on the alpha subunit distinguishes it from the previously known exchangeable GTP binding site which is on the beta subunit. Moreover, excess GTP did not compete with [gamma-32P]N3ATP binding. The ATP binding site is distinct from the nonexchangeable GTP binding site. The GTP content of tubulin was the same after dialysis in 0.5 mM ATP as it was following dialysis against ATP-free buffer. Proof that the binding site for [gamma-32P]N3ATP is the same as that for ATP was obtained by competition experiments. In the presence of ATP, photolysis of the affinity analog did not label the alpha subunit preferentially.  相似文献   

7.
Goat cauda-epididymal intact sperm ecto [32P] proteins phosphorylated in presence of exogenous [gamma-32P]ATP by an endogenous ecto-cyclic AMP-independent protein kinase (CIK), have been found to lose 32P when the labelled cells are incubated at 37 degrees C in a modified Ringer's solution. Analysis of the 32P-labelled products of the turnover of the ecto-phosphoproteins show that 32Pi rather than 32P-labelled peptides, is released from the cell-surface phosphoproteins indicating that the turnover of the ecto-phosphoproteins is mediated by an endogenous sperm outer-surface phosphoprotein phosphatase (ecto-PPase). The ecto-PPase is not a non-specific phosphatase since unlabelled p-nitrophenyl phosphate, beta-glycerophosphate or ATP at a relatively high concentration (1 mM each) has no appreciable effect on the dephosphorylation of the cell-surface proteins. The intact-sperm ecto-proteins phosphorylated and then dephosphorylated by the endogenous ecto-CIK and PPase respectively, undergo rephosphorylation by the cell-surface CIK. The data are consistent with the view that sperm external surface possesses a novel coupled-ecto-CIK and PPase enzyme system that regulates the phosphorylated states of the intact-sperm ecto-proteins by a cyclic mechanism of protein phosphorylation and dephosphorylation.  相似文献   

8.
We have observed that ATP induces a second type of oestradiol binding site with slightly lower affinity (Ka 3.3 x 10(8) M-1) and lower sedimentation coefficient (4 S) in cytosol from immature lamb uterus and MCF-7 cells. A factor isolated from immature lamb uterine nuclear extract was found to decrease the steroid binding activity of oestradiol receptor that had been purified by heparin Sepharose and oestradiol-Sepharose chromatography. Inhibition of this factor by known phosphatase inhibitors, indicated that this factor may be a phosphatase. Another factor isolated from immature lamb uterine cytosol was found to enhance the effect of ATP on receptor binding in cytosol from immature lamb uterus and MCF-7 cells. The ability of this factor to phosphorylate a partially purified cytosol receptor from immature lamb uterus when incubated with [gamma 32P]ATP, indicates that this factor is a phosphokinase. The phosphorylated products after labeling with [3H]tamoxifen aziridine were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Three phosphorylated proteins with molecular weights 150, 97, and 67 kDa bound [3H]tamoxifen aziridine. Ammonium sulphate precipitated cytosol oestradiol receptor from immature lamb uterus was inactivated with receptor inactivating factor and then reactivated with receptor activating factor in the presence of [gamma 32P]ATP and substantially affinity labelled with [3H]tamoxifen aziridine. The affinity labelled oestradiol receptor was immunopurified with the monoclonal antibody JS 34/32. Three proteins with molecular weights 67, 50 and 43 kDa specifically bound [3H]tamoxifen aziridine and only 43 kDa receptor fragment was phosphorylated. The relevance of inactivation/reactivation of oestradiol receptor to the dephosphorylation/phosphorylation of receptor is discussed.  相似文献   

9.
The effects of a photoaffinity derivate of ATP, arylazido-beta-alanyl-ATP, 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl) adenosine 5'-triphosphate, on submitochondrial particles and the partially purified ATPase complex of beef heart mitochondria have been investigated. In the absence of light the ATP analogue has been found to be a substrate for the E132PA1P1-ATP exchange reaction of submitochondrial particles. When photoirradiated in the presence of arylazido-beta-alanyl-ATP, the ATPase activity and the the the [32P]Pi-ATP exchange reaction are inhibited maximally 80%. Arylazido-beta-alanyl-ATP following photolysis is a noncompetitive inhibitor with respect to ATP while arylazido-beta-alanine, the azido-containing adjunct of the ATP analogue, has no inhibitory effect under the same conditions. The inactivating effect of arylazido-beta-alanyl-ATP is prevented in part by the presence of ATP, or ADP and pyrophosphate. Photolabeling produces a covalent binding of the derivative with the F1ATPase being the major protein labeled. The binding of 0.22 mumol of arylazido-beta-alanyl-ATP/mg of mitochondrial protein is associated with a maximal inhibitory effect. The ATPase activity of the partially purified ATPase complex is also sensitive to photoirradiation in the presence of arylazido-beta-alanyl-ATP. When the ATPase complex is associated with liposomes there is an increase in the specific ATPase activity with a 10-fold increase in Vmax and a 4-fold decrease in KmATP associated with a parallel increase in the apparent affinity and maximal inhibitory effect of the arylazido-beta-alanyl-ATP. The photoinhibition of the ATPase complex in the presence of arylazido-beta-alanyl-ATP results in covalent binding of 1.6 mumol of arylazido-beta-alanyl-ATP/mg of protein. The alpha and beta subunits are the only components of the ATPase complex labeled by the [3H]arylazido-beta-alanyl-ATP. The relationship between the arylazido-beta-alanyl-ATP-labeled sites and the nucleotide binding sites on the mitochondrial ATPase is discussed.  相似文献   

10.
The 3H-labeled prostaglandin D2 [( 3H]PGD2) binding protein in the membrane fraction of mastocytoma P-815 cells was characterized. The specific binding of [3H]PGD2 to the cells or the membranes reached a maximum at pH 5.6, and was saturable, displaceable and of high affinity when incubated at 0 or 37 degrees C. The Bmax values for [3H]PGD2 binding in the two preparations at pH 5.6 were much higher at 0 degrees C than at 37 degrees C, whereas the Kd values were almost equal (85.3 nM for the cells and 80.5 nM for the membranes, respectively). High specific [3H]PGD2 binding activity in the mildly acid-treated cells was still observed when the external pH was raised from 5.6 to 7.2. Furthermore, specific [3H]PGD2 binding to the membranes (at 0 degrees C, pH 5.6) increased on addition of phosphatase inhibitors (NaF and molybdate) in the presence of 10 microM ATP, but practically disappeared on pretreatment of the membranes with phosphatase. On incubation of the membrane with [gamma-32P]ATP and molybdate, the stimulated incorporation of the [32P]phosphate into several peptides, including ones having an Mr of around 100,000-120,000, was observed. These results suggest that [3H]PGD2 binding in the mastocytoma P-815 cell membrane is controlled through phosphorylation-dephosphorylation of the receptor itself.  相似文献   

11.
ATP:thiamin pyrophosphotransferase (TPT: EC 2.7.6.2) was purified 5 900-fold from 48 h dark-grown soybean [ Glycine max (L.), Merr. cv. Ransom II] seedling axes. TPT activity was monitored during purification by measuring the formation of thiamin pyrophosphate (TPP) from [2-14C]-thiamin at optimal pH (7.3). Although other nucleoside triophosphates were active as pyrophosphate donors (apparent Kms from 21 to 138 m M ), GTP was the preferred nucleotide with an apparent Km of 0.021 m M . TPT activity was extremely sensitive to TPP formation, suggesting product feedback inhibition of TPT activity in vivo. Sulfhydryl, H+ and Mg2+ concentrations, either independently or in concert, were found to affect TPT activity.  相似文献   

12.
Soluble purified CF(0)F(1) from chloroplasts was either oxidized or reduced and then incubated with [alpha-(32)P]ATP in the presence or in the absence of Mg(2+). Depending on the conditions of incubation, the enzyme showed different tight-nucleotide binding sites. In the presence of EDTA, two sites bind [alpha-(32)P]ATP from the reaction medium at different rates. Both sites promote ATP hydrolysis, since equimolar amounts of [alpha-(32)P]ATP and [alpha-(32)P]ADP are bound to the enzyme. In the presence of Mg(2+), only one site appears during the first hour of incubation, with characteristics similar to those described in the absence of Mg(2+). However, after this time a third site appears also permitting binding of ATP from the reaction medium, but in this case the bound ATP is not hydrolyzed. Covalent derivatization by 2-azido-[alpha-(32)P]ATP was used to distinguish between catalytic and noncatalytic sites. In the presence of Mg(2+), there are at least three distinct nucleotide binding sites that bind nucleotide tightly from the reaction medium: two of them are catalytic and one is noncatalytic.  相似文献   

13.
When sarcolemma membranes isolated from rat skeletal muscle were incubated with [gamma-32P]ATP, a membrane protein of apparent Mr 95,000 was rapidly phosphorylated, with the 32P content reaching a maximum within 2 s. On the basis of immunoprecipitation with anti-insulin-receptor antiserum, phosphoamino acid analysis and Mr, this protein probably represents the beta-subunit of the insulin receptor. Similarly, on incubation of the membrane with adenosine 5'-[gamma-[35S]thio] triphosphate the 95 kDa protein was thiophosphorylated, indicating thiophosphorylation of the beta-subunit of the insulin receptor on the basis of immunoprecipitation studies. The effect of insulin on the phosphorylation of this protein in the membrane was studied. Insulin induced a 20% decrease in the 32P labelling of the protein when the membranes were phosphorylated for 10 s. This insulin effect was dose-dependent, with half-maximal effect obtained at 2-3 nM-insulin. Addition of GTP, but not GDP or guanosine 5'-[beta, gamma-imido]triphosphate, enhanced the effect to 35% inhibition, with half-maximal effect of GTP obtained at 0.5 microM. GTP had no effect on the phosphorylation of the protein in the absence of insulin. Analysis of this insulin effect showed that insulin increased the rate of dephosphorylation of the 95 kDa protein in the membrane. In contrast, insulin had no effect on thiophosphorylation of the 95 kDa membrane protein after incubation with adenosine 5'-[gamma-[35S]thio]triphosphate. Since thiophosphorylated proteins are less sensitive to phosphatase action, these investigations suggest that insulin stimulated a protein phosphatase activity in a GTP-dependent manner. The possibility that GTP-regulatory proteins are involved in the action of insulin on the phosphorylation of the insulin receptor and other membrane proteins is discussed.  相似文献   

14.
P Dalbon  F Boulay  P V Vignais 《FEBS letters》1985,180(2):212-218
The ADP/ATP carrier of beef heart mitochondria is able to bind 2-azido-[alpha-32P]ADP in the dark with a Kd value of congruent to 8 microM. 2-Azido ADP is not transported and it inhibits ADP transport and ADP binding. Photoirradiation of beef heart mitochondria with 2-azido-[alpha-32P]ADP results mainly in photolabeling of the ADP/ATP carrier protein; photolabeling is prevented by carboxyatractyloside, a specific inhibitor of ADP/ATP transport. Upon photoirradiation of inside-out submitochondrial particles with 2-azido-[alpha-32P]ADP, both the ADP/ATP carrier and the beta subunit of the membrane-bound F1-ATPase are covalently labeled. The binding specificity of 2-azido-[alpha-32P]ADP for the beta subunit of F1-ATPase is ascertained by prevention of photolabeling of isolated F1 by preincubation with an excess of ADP.  相似文献   

15.
Glucokinase, purified from rat liver, was phosphorylated to an extent of 1 mol [32P]-phosphate/mol of enzyme when incubated with [32P]ATP and protein kinase A from pig or rabbit muscle. The phosphate was bound to serine residues. K0.5 increased and Vmax decreased upon phosphorylation. The phosphate group was removed during incubation of the phosphorylated glucokinase with alkaline phosphatase. Enzymatically inactive glucokinase was not phosphorylated by the protein kinase.  相似文献   

16.
1. The rat-liver cell-sap material from which 3-[32P]phosphohistidine was previously isolated after incubation with [gamma-32P]ATP and alkaline hydrolysis, was shown to increase about 6-fold on a high-carbohydrate diet. This increase in 32P labelling corresponded to the increase in ATP citrate lyase activity of livers of rats fed on a high-carbohydrate diet, as reported by others. 2. ATP citrate lyase [ATP:citrate oxaloacetate-lyase (CoA-acetylating and ATP-dephopshorylating), EC 4.1.3.8] was purified from rat liver essentially according to the method of Plowman and Cleland (J. Biol. Chem., 242 (1967) 4239). The purified enzyme was incubated for a short time at 0 degree with [gamma-32P]ATP in the presence of 20 mM magnesium acetate. The phosphorylated protein was hydrolysed in alkali and the main part of the radioactivity was identified as 3-[32P]phosphohistidine. The identity of the phosphorylated amino acid was established by Dowex-1 chromatography, paper electrophoresis, paper chromatography and by analysis of the stability to acid. 3. It is concluded from these and previous results from this laboratory that ATP citrate lyase and nucleoside diphosphate kinase (ATP:nucleoside diphosphate phosphotransferase, EC 2.7.4.6) account for most of the normal rat-liver cell-sap protein which is rapidly phosphorylated by ATP.  相似文献   

17.
M A Shia  P F Pilch 《Biochemistry》1983,22(4):717-721
In the presence of adenosine 5'-[gamma-32P]triphosphate ([gamma-32P]ATP) and a partially purified human placental insulin receptor preparation, insulin stimulates the phosphorylation of an Mr 94000 protein in a time- and dose-dependent manner. Half-maximal stimulation of 32P incorporation occurs at (2-3) X 10(-9) M insulin, a concentration identical with the Kd for insulin binding in this preparation. Immunoprecipitations with monoclonal anti-insulin receptor antibody demonstrate that the Mr 94000 protein kinase substrate is a component of the insulin receptor, the beta subunit. If the partially purified, soluble placental receptor preparation is immunoprecipitated and then exposed to [gamma-32P]ATP and insulin, phosphorylation of the Mr 94000 protein is maintained. The photoincorporation of 8-azido[alpha-32P]ATP into placental insulin receptor preparations was carried out to identify the ATP binding site responsible for the protein kinase activity. Photoincorporation into numerous proteins was observed, including both subunits of the insulin receptor. However, when photolabeling was performed in the presence of excess adenosine 5'-(beta, gamma-imidotriphosphate), a nonhydrolyzable ATP derivative, the beta subunit of the insulin receptor was the only species protected from label incorporation. These data indicate that the beta subunit of the insulin receptor has insulin-dependent protein kinase activity. Phosphotyrosine formation is the primary result of this activity in placental insulin receptor preparations.  相似文献   

18.
Incubation of hepatocytes with [32P]orthophosphate resulted in the incorporation of 32P into material that is precipitated by reaction with antibodies to ATP citrate lyase. The amount of radioactivity precipitated was decreased when unlabeled, purified ATP citrate lyase was added to extracts of hepatocytes that had been incubated with [32P]orthophosphate. Addition of glucagon to hepatocytes that had been preincubated with [32P]orthophosphate resulted in a 56% increase in acid-stable 32P in the trichloroacetic acid-insoluble portion of immunoprecipitates. Catalytic phosphate bound to ATP citrate lyase reaction with ATP and Mg2+ is acid-labile; thus, glucagon-dependent phosphorylation is distinguished from the catalytic phosphate. When hepatocytes were incubated in the absence of [32P]orthophosphate and extracted in a medium containing [gamma-32P]ATP, no acid-stable 32P was present in immunoprecipitates. This indicates that the incorporation into ATP citrate lyase of acid-stable phosphate occurs prior to extraction of the enzyme. Preliminary studies, using a procedure that allows for measurement of enzyme activity starting 1 min after beginning the extraction of lyase from hepatocytes, have shown no difference in lyase activity when hepatocytes are treated with or without glucagon.  相似文献   

19.
S Iuchi  E C Lin 《Journal of bacteriology》1992,174(17):5617-5623
In Escherichia coli, a two-component signal transduction system, consisting of the transmembrane sensor protein ArcB and its cognate cytoplasmic regulatory protein ArcA, controls the expression of genes encoding enzymes involved in aerobic respiration. ArcB belongs to a subclass of sensors that have not only a conserved histidine-containing transmitter domain but also a conserved aspartate-containing receiver domain of the regulator family. 'ArcB (a genetically truncated ArcB missing the two transmembrane segments on the N-terminal end) and ArcA were purified from overproducing cells. Autophosphorylation of 'ArcB was revealed when the protein was incubated with [gamma-32P]ATP but not with [alpha-32P]ATP or [gamma-32P]GTP. When ArcA was incubated in the presence of 'ArcB and [gamma-32P]ATP, ArcA acquired radioactivity at the expense of the phosphorylated protein 'ArcB-32P. When a limited amount of 'ArcB was incubated with excess ArcA and [gamma-32P]ATP, ArcA-32P increased linearly with time. Under such conditions, for a given time period the amount of ArcA phosphorylated was proportional to the concentration of 'ArcB. Thus, 'ArcB acted as a kinase for ArcA. Chemical stabilities of the phosphorylated proteins suggested that 'ArcB-32P contained both a histidyl phosphate and an aspartyl phosphate(s) and that ArcA-32P contained only an aspartyl phosphate(s).  相似文献   

20.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号