首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydractinia echinata and Aurelia aurita produce motile larvae which undergo metamorphosis to sessile polyps when induced by external cues. The polyps are found at restricted sites, A. aurita predominantly on rocks close to the shore, H. echinata on shells inhabited by hermit crabs. It has been argued that the differential distribution of the polyps in their natural environment largely reflects the distribution of the natural metamorphosis-inducing cues. In the case of H. echinata, bacteria of the genus Alteromonas were argued to meet these conditions. We found that almost all substrates collected in the littoral to induce metamorphosis in H. echinata, and several bacterial strains isolated from the sea, including the common E. coli, induce metamorphosis efficiently. In A. aurita metamorphosis may be induced by the water–air interface, whereby metamorphosis precedes (final) settlement. Received: 7 December 1998 / Accepted: 8 July 1999  相似文献   

2.
Summary Strobilation and polypoid budding occur at different locations in the scyphistoma (polyp). Initiation and completion of both forms of budding are inhibited by hydroxyurea (HU), which blocks 95% of DNA synthesis within 12 h. Gradients of thymidine incorporation into both cell layers of the body column precede and accompany strobilation, and an epidermal gradient precedes polypoid budding. In both, the highest labelling index is in the zone in which initiation will occur. Polypoid buds show high variation in labelling index, which is therefore not significantly different from body column labelling. Initiation and some elongation of polyp buds occurs in a small percentage of animals in HU, indicating that cell recruitment is important for these processes. Strobilation appears to be more highly dependent on localized nucleic acid synthesis than polypoid budding.  相似文献   

3.
The morphology and histology of the planula larva ofEudendrium racemosum (Cavolini) and its metamorphosis into the primary polyp are described from light microscopic observations. The planula hatches as a differentiated gastrula. During the lecithotrophic larval period, large ectodermal mucous cells, embedded between epitheliomuscular cells, secrete a sticky slime. Two granulated cell types occur in the ectoderm that are interpreted as secretory and sensorynervous cells, but might also be representatives of only one cell type with a multiple function. The entoderm consists of yolk-storing gastrodermal cells, digestive gland cells, interstitial cells, cnidoblasts, and premature cnidocytes. The larva starts metamorphosis by affixing its blunt aboral pole to a substratum. While the planula flattens down, the mucous cells penetrate the mesolamella and migrate through the entoderm into the gastral cavity where they are lysed. Subsequently, interstitial cells, cnidoblasts, and premature cnidocytes migrate in the opposite direction, i.e. from entoderm to ectoderm. Then, the polypoid body organization, comprising head (hydranth), stem and foot, all covered by peridermal secretion, becomes recognisable. An oral constriction divides the hypostomal portion of the gastral cavity from the stomachic portion. Within the hypostomal entoderm, cells containing secretory granules differentiate. Following growth and the multiplication of tentacles, the head periderm disappears. A ring of gland cells differentiates at the hydranth's base. The positioning of cnidae in the tentacle ectoderm, penetration of the mouth opening and the multiplication of digestive gland cells enable the polyp to change from lecithotrophic to planktotrophic nutrition.  相似文献   

4.
The settlement of pedal stolons of scyphopolyps ofAurelia aurita Lamarck could be induced by addition of a species of bacteria from the family Micrococcaceae. After treatment of the bacteria with several organic solvents a crude lipid extract free of bacteria could be obtained which was shown to be effective in inducing stolon settlement. Crude lipids extracted from the late logarithmic growth phase had an optimal effect on stolon attachment, in contrast to previously published experiments showing that all logarithmic phases of bacteria had the same level of effectiveness. After separation of the crude lipid extracts by thin layer chromatography and subsequent bioassay of the reeluated substances, acylgalactosidyldiglyceride and monogalactosidyldiglyceride were identified as the effective substances. Monogalactosidyldiglyceride was only found in bacteria from the medium logarithmic growth phase, whereas the former was found at all stages. The effectiveness of acylgalactosidyldiglyceride was independent of the growth phase of the extracted bacteria.  相似文献   

5.
6.
Coronate polyps retract their soft bodies into a protective peridermal tube after mechanical irritation. Sediment may enter the tube of contracted polyps, however, and block the opening [Jarms, G., 1990. Neubeschreibung dreier Arten der Gattung Nausithoe (Coronatae, Scyphozoa) sowie Wiederbeschreibung der Art Nausithoe marginata Kölliker, 1853. Mitt. Hamb. Zool. Mus. Inst. 87, 7-39; Silveira, F.L. da, Jarms, G., Morandini, A.C., 2003. Experiments in nature and laboratory observations with Nausithoe aurea (Scyphozoa: Coronatae) support the concept of perennation by tissue saving and confirm dormancy. Biota Neotropica 2 (2), 1-25]. In the present study, the ability of different coronate species [Nausithoe aurea Silveira and Morandini, 1997, Nausithoe planulophora (Werner, 1971), Thecoscyphus zibrowii Werner, 1984, Linuche unguiculata (Swarts, 1788)] to expel sediment particles from the tube was investigated. In laboratory experiments, sand grains and mussel shell fragments were inserted into the tubes and the responses of polyps were observed. Particles were ingested as polyps extended themselves, and after extension, they were defecated. Ingestion was effected by an aborally directed flagellar beat of the flagellated gastrodermal epithelia that was reversed for defecation. Particles only slightly smaller than the tube opening could be expelled, and extension of the polyp was possible even if grains blocked 2/3 of the tube. However, if particles became stuck in the tube, ingestion was impossible and polyp extension failed. Comparisons among the tested species showed that expulsion success depended on tube shape and polyp morphology. In N. aurea and N. planulophora, less than 5% of tubes were permanently blocked. The cave-dwelling species T. zibrowii was not able to ingest particles due to its particular morphology, and in 25% of experiments with shell fragments tubes were permanently blocked. Thin, elongate tubes of the colonial polyps L. unguiculata were also often permanently blocked by shell fragments (50%), but new polyps were developed from the scyphorhiza to ensure survival of the colony. Solitary polyps were able to survive more than 5 months retracted beneath any blocking particles. After tubes were cut off beneath such particles normal polyps developed. From our observations, we suggest that coronate polyps can exist in habitats with moderate sedimentation, and that they can survive being temporarily buried.  相似文献   

7.
We examined the development of the nervous system in Aurelia (Cnidaria, Scyphozoa) from the early planula to the polyp stage using confocal and transmission electron microscopy. Fluorescently labeled anti-FMRFamide, antitaurine, and antityrosinated tubulin antibodies were used to visualize the nervous system. The first detectable FMRFamide-like immunoreactivity occurs in a narrow circumferential belt toward the anterior/aboral end of the ectoderm in the early planula. As the planula matures, the FMRFamide-immunoreactive cells send horizontal processes (i.e., neurites) basally along the longitudinal axis. Neurites extend both anteriorly/aborally and posteriorly/orally, but the preference is for anterior neurite extension, and neurites converge to form a plexus at the aboral/anterior end at the base of the ectoderm. In the mature planula, a subset of cells in the apical organ at the anterior/aboral pole begins to show FMRFamide-like and taurine-like immunoreactivity, suggesting a sensory function of the apical organ. During metamorphosis, FMRFamide-like immunoreactivity diminishes in the ectoderm but begins to occur in the degenerating primary endoderm, indicating that degenerating FMRFamide-immunoreactive neurons are taken up by the primary endoderm. FMRFamide-like expression reappears in the ectoderm of the oral disc and the tentacle anlagen of the growing polyp, indicating metamorphosis-associated restructuring of the nervous system. These observations are discussed in the context of metazoan nervous system evolution.  相似文献   

8.
9.
We report on the first record of interstitial cnidarians in sea ice. Ice core samples were collected during eight field periods between February 2003 and June 2006 in the coastal fast ice off Barrow, Alaska (71°N, 156°W) at four locations. A total of 194 solitary, small (0.2–1.1 mm) elongated specimens of a previously unknown interstitial hydroid taxon were found. By cnidome composition and the occurrence of a highly retractable pedal disc formed by epidermal tissue only, the specimens are tentatively assigned to representatives of the family Protohydridae, subclass Anthomedusae. The hydroids were found almost exclusively in the bottom 10 cm-layer (at the ice–water interface) of 118 ice cores, with abundances ranging from 0 to 27 individuals per core section (0–4,244 ind m−2) and a grand mean of 269 ind m−2 in bottom 10 cm-layer sections. Abundances were lower in December and late May than in months in between with considerable site variability. A factor analysis using 12 variables showed that hydroid abundance correlated highest with abundances of copepod nauplii and polychaete juveniles suggesting a trophic relationship.  相似文献   

10.
Summary Planulae are simply structured larvae lacking an overt longitudinal organization. In the course of a rapid metamorphosis, however, they transform into polyps, which display striking structural patterns. Metamorphosis takes place only in response to external stimuli. Surgical removal and transplantation of larval parts reveal that external stimuli, including artificial inducers such as cesium ions, tumor promoters and diacylglycerol, act on the anterior quarter of the larva where sensory cells containing Arg-Phe-amide-like peptides are located. The external stimuli initiate the release of an internal signal, which is transmitted to the posterior end causing the successive transformation of larval into adult tissue. The transformation front moves from the anterior to the posterior quarter in 60 min. The internal signal can be released or bypassed by a transitory lowering of the Mg2+ content of the seawater. By using this procedure, or by administering an extract containing the putative internal signal substance, each isolated part of the larva can be induced to metamorphose separately. Provided there is no time for regeneration after cutting before metamorphosis is initiated, the most anterior fragment forms only stolons, the most posterior fragment forms only a head. The overt pattern of the polyp is, therefore, generated under the influence of a covert anterior-posterior prepattern of the larva.  相似文献   

11.
Scaling up from local, short-term experiments to larger-area and longer-term ones is crucial to address the role of scale in ecology. Few studies, however, examined large-scale spatial variability in the distribution and abundance of marine organisms, with rare attempts to directly compare spatial variation at local (centimetres-metres) vs. regional (1000's of kilometres) scale. Here, we used a hierarchical design to describe the spatial distribution of the hydroids epiphitic of the brown alga Cystoseira amentacea, a habitat-forming species that provides a continuous, extensive settling substrate at regional scale along the rocky coasts in the Mediterranean Sea. This continuity provides the potential to deal with scale-related variability, increasing area of investigation without adding differences deriving from habitat heterogeneity or changes in topographic complexity. Hydroids were selected for their abundance and for their life cycle features (rapid growth, small body size, early sexual or asexual reproduction and short life span), allowing rapid responses to changes in environmental conditions. The aim of this study was to analyse whether the structure of hydroid assemblages living on C. amentacea had a consistent pattern of variation among three portions of the algal thallus (i.e., basal, middle, and distal) across a spectrum of scales and whether having or not a pelagic stage could exert a significant influence on the distribution patterns of the species. A total of 32 species were identified. Multivariate analyses showed that hydroid colonization of Cystoseira occurs differently along each thallus, with patterns of variation in the structure of assemblages differing at an even smaller spatial scale than that of single plants. However, such differences varied from patch to patch. Among the 14 species identified as “important” to define the hydroid assemblage inhabiting Cystoseira, only one (Clytia hemisphaerica) has free medusae, the other species reproducing by fixed gonophores or by short-lived medusoids. Univariate analysis showed significant differences among portions of thalli in terms of spatial variability at the various scales investigated, thus suggesting that patterns of multivariate variation along the three portions of thalli might vary across scale. Overall, our results suggest that patterns of distribution of hydroids along C. amentacea thalli significantly vary across spatial scales but that the observed differences can be hardly interpreted on the basis of life-cycle patterns.  相似文献   

12.
Summary

The embryonic origin of the nervous system in Phialidium gregarium was investigated. Entoderm-free planulae, surgically produced by bisection at mid-gastrulation, and normal planulae were examined by light and electron microscopy to determine their cellular composition. The cell types that occur in the epidermis of the normal planula were described. The entoderm-free planulae were found to be devoid of interstitial cells and their derivatives, the nematocytes and ganglion cells. Neurosensory cells were present, however, indicating that they are derivatives of the ectodermal epithelium.

The role of nerve elements in the initiation of metamorphosis was also examined. Normal and entoderm-free planulae treated for four hours with 0.4% colchicine at two, three, or four days of development fail to undergo cesium-induced metamorphosis. Since such treatment in other hydrozoans eliminates interstitial cells and their derivatives [1-3], it might be argued that ganglion cells are necessary to initiate metamorphosis. The observation that entoderm-free planulae, devoid of interstitial cell derivatives, are capable of responding to induction by bacteria or cesium, however, indicates that in Phialidium the colchicine effect is on other cell types. The results are compared with findings for other Cnidaria.  相似文献   

13.
Aurelia aurita is a cosmopolite species of scyphomedusae. Its anatomy and life cycle are well investigated. This work provides a detailed study on development and structure of A. aurita planula before and during its metamorphosis. Intravital observations and histology study during the settlement and metamorphosis of the planulae demonstrated that the inner manubrium lining of primary polyp (gastroderm) develops from the ectoderm of the planula posterior end. The spatial and temporal dynamics of serotonergic cells from the early embryonic stages until the formation of the primary polyp were studied for the first time. In addition, the distribution of tyrosinated tubulin and neuropeptide RF-amide at different stages of A. aurita development was traced.  相似文献   

14.
Within the Cnidaria, the occurrence of ocelli at the polyp stage is only known in the species of Stylocoronella (Scyphozoa, Stauromedusae). The light-sensitive organs of S. riedli are ultrastructurally investigated. In this interstitial-living species, each of the up to 24 ocelli is composed of between seven and nine monociliary sensory cells and between one and four pigment cells. A striking feature of the photoreceptive cilia is their peculiar axonemal pattern. This is expressed (a) by the presence of a third central microtubule at a certain point and (b) by the balloon-like swelling of the distal portion of the cilium, with clearly scattered microtubules in this area. Although the polyps of S. riedli show no distinct reaction to light stimuli, the ultrastructural results corroborate the hypothesis that these organs are light-sensitive organs. The possible function of the pigment granules is discussed.Abbreviations bb basal body - c cilium - co collar - csv crescent-shaped vesicle - cv clear vesicle - dcv dense-core vesicles - k kinetosome - m mitochondrion - mvb multivesicular body - n nucleus - oc ocellus - pc piment cell - pg pigment granule - sc sensory cell - sr striated rootlet - v vesicle  相似文献   

15.
The planula larva of the hydroid Clava multicornis (Forskål, 1775) has a complex nervous system, characterized by the presence of distinct, anteriorly concentrated peptidergic populations of amidated neurons, presumably involved in the detection of environmental stimuli and metamorphic signals. Differently from other hydrozoan larvae in C. multicornis planulae GLW-positive cells with putative sensory role have a peculiar dome-shaped forefront organization, followed by a belt of RF-positive nerve cells. By immunohistochemistry, we investigated the transformation of the peptidergic (GLW-amide and RF-amide) larval neuroanatomy at different stages of metamorphosis and the subsequent development of the primary polyp nervous system. By terminal transferase-mediated dUTP nick end-labeling assay, apoptotic nuclei were first identified in the anterior pole of the settled larva, in the same region occupied by GLW-amide positive putative sensory cells. In primary polyps, GLW-amide positive signals first encircled the hypostome area, later extending downwards along the polyp column or upwards over the hypostome dome, whereas RF-amide positive sensory cells initially appeared at the tentacles base to later extend in the tentacles and the polyp column. In spite of the possession of distinct neuroanatomies, different cnidarian planulae may share common developmental mechanisms underlying metamorphosis, including apoptosis and de novo differentiation. Our data confirm the hypothesis that the developmental dynamics of tissue rearrangements may be not uniform across different taxa.  相似文献   

16.
It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year. Handling editor: K. Martens  相似文献   

17.
Summary The planulae ofHydractinia, the metamorphosis of which normally is induced by certain bacteria, will undergo transformation into polyps also when exposed to a lithiumpulse. The optimal concentration and incubation period for rapid and complete transformation have been determined at 24 mM Li+ and 2 hrs respectively. 96 mM K+ applied for 2 hrs will also result in some induction. The possible mode of action exerted by the Li-ion as compared with induction caused by bacteria is discussed.
Zusammenfassung Die Planulae vonHydractinia, deren Metamorphose normalerweise durch bestimmte marine Bakterien induziert wird, wandeln sich ebenso in Primärpolypen um, wenn sie einem Li+-Puls ausgesetzt werden. Zur schnellen, vollzähligen und vollständigen Metamorphose müssen Konzentration und Behandlungszeit im optimalen Verhältnis gehalten werden. Als optimal erwies sich eine Dosis von 24 mM Li+ appliziert für 2 Std. Eine schwache Wirkung erzielt auch ein K+-Puls in der optimalen Konzentration von 96 mM. Die mögliche gemeinsame Wirkungsweise des bakteriellen Induktors und der Ionen wird diskutiert.


We are deeply indebted to Dr. W. Gunkel, Biologische Anstalt Helgoland, for his kindness in placing at our disposal the equipment of the microbiological laboratory. Also the support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.  相似文献   

18.
We examined the development of the nervous system in the rhopalium, a medusa-specific sensory structure, in Aurelia sp.1 (Cnidaria, Scyphozoa) using confocal microscopy. The rhopalial nervous system appears primarily ectodermal and contains neurons immunoreactive to antibodies against tyrosinated tubulin, taurine, GLWamide, and FMRFamide. The rhopalial nervous system develops in an ordered manner: the presumptive gravity-sensing organ, consisting of the lithocyst and the touch plate, differentiates first; the “marginal center,” which controls swimming activity, second; and finally, the ocelli, the presumptive photoreceptors. At least seven bilaterally arranged neuronal clusters consisting of sensory and ganglion cells and their neuronal processes became evident in the rhopalium during metamorphosis to the medusa stage. Our analysis provides an anatomical framework for future gene expression and experimental studies of development and functions of scyphozoan rhopalia. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
David K. Jacobs (Corresponding author)Email:
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号