首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.  相似文献   

2.
Continuous hyperglycemia is considered to be the most significant pathogenesis of diabetic cardiomyopathy, which manifests as cardiac hypertrophy and subsequent heart failure. O-GlcNAcylation has attracted attention as a post-translational protein modification in the past decade. The role of O-GlcNAcylation in high glucose-induced cardiomyocyte hypertrophy remains unclear. We studied the effect of O-GlcNAcylation on neonatal rat cardiomyocytes that were exposed to high glucose and myocardium in diabetic rats induced by streptozocin. High glucose (30 mM) incubation induced a greater than twofold increase in cell size and increased hypertrophy marker gene expression accompanied by elevated O-GlcNAcylation protein levels. High glucose increased ERK1/2 but not p38 MAPK or JNK activity, and cyclin D2 expression was also increased. PUGNAc, an inhibitor of β-N-acetylglucosaminidase, enhanced O-GlcNAcylation and imitated the effects of high glucose. OGT siRNA and ERK1/2 inhibition with PD98059 treatment blunted the hypertrophic response and cyclin D2 upregulation. OGT inhibition also prevented ERK1/2 activation. We also observed concentric hypertrophy and similar changes of O-GlcNAcylation level, ERK1/2 activation and cyclin D2 expression in myocardium of diabetic rats induced by streptozocin. In conclusion, O-GlcNAcylation plays a role in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2.  相似文献   

3.
Mitogen-activated protein kinases (MAPKs) play different regulatory roles in signaling oxidative stress-induced apoptosis in cardiac ventricular myocytes. The regulation and functional role of cross-talk between p38 MAPK and extracellular signal-regulated kinase (ERK) pathways were investigated in cardiac ventricular myocytes in the present study. We demonstrated that inhibition of p38 MAPK with SB-203580 and SB-239063 enhanced H(2)O(2)-stimulated ERK phosphorylation, whereas preactivation of p38 MAPK with sodium arsenite reduced H(2)O(2)-stimulated ERK phosphorylation. In addition, pretreatment of cells with the protein phosphatase 2A (PP2A) inhibitors okadaic acid and fostriecin increased basal and H(2)O(2)-stimulated ERK phosphorylation. We also found that PP2A coimmunoprecipitated with ERK and MAPK/ERK (MEK) in cardiac ventricular myocytes, and H(2)O(2) increased the ERK-associated PP2A activity that was blocked by inhibition of p38 MAPK. Finally, H(2)O(2)-induced apoptosis was attenuated by p38 MAPK or PP2A inhibition, whereas it was enhanced by MEK inhibition. Thus the present study demonstrated that p38 MAPK activation decreases H(2)O(2)-induced ERK activation through a PP2A-dependent mechanism in cardiac ventricular myocytes. This represents a novel cellular mechanism that allows for interaction of two opposing MAPK pathways and fine modulation of apoptosis during oxidative stress.  相似文献   

4.
5.
To investigate the effects of calcitriol on angiotensin-converting enzyme (ACE) and ACE2 in diabetic nephropathy. Streptozotocin (STZ) induced diabetic rats were treated with calcitriol for 16 weeks. ACE/ACE2 and mitogen activated protein kinase (MAPK) enzymes were measured in the kidneys of diabetic rats and rat renal tubular epithelial cells exposed to high glucose. Calcitriol reduced proteinuria in diabetic rats without affecting calcium-phosphorus metabolism. ACE and ACE2 levels were significantly elevated in diabetic rats compared to those in control rats. The increase in ACE levels was greater than that of ACE2, leading to an elevated ACE/ACE2 ratio. Calcitriol reduced ACE levels and ACE/ACE2 ratio and increased ACE2 levels in diabetic rats. Similarly, high glucose up-regulated ACE expression in NRK-52E cells, which was blocked by the p38 MAPK inhibitor SB203580, but not the extracellular signal-regulated kinase (ERK) inhibitor FR180204 or the c-Jun N-terminal kinase (JNK) inhibitor SP600125. High glucose down-regulated ACE2 expression, which was blocked by FR180204, but not SB203580 or SP600125. Incubation of cells with calcitriol significantly inhibited p38 MAPK and ERK phosphorylation, but not JNK phosphorylation, and effectively attenuated ACE up-regulation and ACE2 down-regulation in high glucose conditions. The renoprotective effects of calcitriol in diabetic nephropathy were related to the regulation of tubular levels of ACE and ACE2, possibly by p38 MAPK or ERK, but not JNK pathways.  相似文献   

6.
The extracellular tissue penetrating protozoan parasite Entamoeba histolytica has been known to induce host cell apoptosis. However, the intracellular signaling mechanism used by the parasite to trigger apoptosis is poorly understood. In this study, we investigated the roles of reactive oxygen species (ROS), and of MAPKs in the Entamoeba-induced apoptosis of human neutrophils. The neutrophils incubated with live trophozoites of E. histolytica revealed a marked increase of receptor shedding of CD16 as well as phosphatidylserine (PS) externalization on the cell surface. The Entamoeba-induced apoptosis was effectively blocked by pretreatment of cells with diphenyleneiodonium chloride (DPI), a flavoprotein inhibitor of NADPH oxidase. A large amount of intracellular ROS was detected after exposure to viable trophozoites, and the treatment with DPI strongly inhibited the Entamoeba-induced ROS generation. However, a mitochondrial inhibitor rotenone did not attenuate the Entamoeba-induced ROS generation and apoptosis. Although E. histolytica strongly induced activation of ERK1/2 and p38 MAPK in neutrophils, the activation of ERK1/2 was closely associated with ROS-mediated apoptosis. Pretreatment of neutrophils with MEK1 inhibitor PD98059, but not p38 MAPK inhibitor SB202190, prevented Entamoeba-induced apoptosis. Moreover, DPI almost completely inhibited Entamoeba-induced phosphorylation of ERK1/2, but not phosphorylation of p38 MAPK. These results strongly suggest that NADPH oxidase-derived ROS-mediated activation of ERK1/2 is required for the Entamoeba-induced neutrophil apoptosis.  相似文献   

7.
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.  相似文献   

8.
To investigate the role of mitogen-activated protein kinase (MAPK) and downstream events in cadmium (Cd)-induced neuronal apoptosis executed via the mitochondrial apoptotic pathway, this study used the PC-12 cell line as a neuronal model. The result showed that Cd significantly decreased cell viability and the Bcl-2?/?Bax ratio and increased the percentage of apoptotic cells, release of cytochrome c, caspase-3, and poly(ADP-ribose) polymerase cleavage, and nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G. In addition, exposure to Cd-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2?/?Bax ratio and cytochrome c release and suppressed caspase-3 and poly(ADP-ribose) polymerase cleavage and AIF and endonuclease G nuclear translocation. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathway played an important role in Cd-induced PC12 cells apoptosis.  相似文献   

9.
目的:研究髓样分化蛋白2(MD2)基因沉默对高糖(HG)诱导的大鼠心肌细胞增殖抑制、凋亡及炎症反应的影响及其机制。方法:体外大鼠心肌细胞系H9C2细胞随机分为4组(n=3):LG组、HG组、HG + NC组、HG + si-MD2组,分别转染MD2基因小干扰RNA(si-MD2)或阴性对照24 h后进行低糖或高糖处理48 h。RT-qPCR检测MD2及细胞内炎症细胞因子TNF-α、IL-1β、IL-6的表达水平,MTS法、流式细胞术检测细胞增殖能力、细胞周期和细胞凋亡率,Western blot法检测细胞内相关蛋白的表达水平及磷酸化水平。结果:转染si-MD2后,H9C2细胞中MD2的表达水平明显下降(P<0.01)。与低糖(LG)组比较,高糖处理后的H9C2细胞中TNF-α、IL-1β、IL-6的mRNA水平显著升高,细胞增殖能力下降并发生G1期阻滞,细胞凋亡率和Cleaved Caspase-3蛋白水平升高(P< 0.01)。而MD2基因沉默可拮抗高糖对H9C2细胞增殖、细胞周期、凋亡及细胞中TNF-α、IL-1β、IL-6 mRNA水平的影响(P<0.05)。Western blot测定结果表明高糖处理后的H9C2细胞中细胞外信号调节激酶(ERK1/2)、P38丝裂原活化蛋白激酶(P38 MAPK)和C-Jun氨基末端激酶(JNK)蛋白的磷酸化水平明显升高,而MD2基因沉默可抑制高糖诱导下的ERK1/2、P38 MAPK和JNK蛋白激活(P<0.01)。结论:MD2基因沉默可能通过抑制ERK、P38 MAPK和JNK信号通路的激活来减少高糖诱导的大鼠心肌细胞炎症细胞因子表达,减少心肌细胞凋亡,促进细胞增殖。  相似文献   

10.
Chronic high glucose levels lead to the formation of advanced glycation end-products (AGEs) as well as AGE precursors, such as methylglyoxal (MG) and glyoxal, via non-enzymatic glycation reactions in patients with diabetic mellitus. Glyoxalase 1 (GLO-1) detoxifies reactive dicarbonyls that form AGEs. To investigate the interaction between AGEs and GLO-1 in mesangial cells (MCs) under diabetic conditions, AGE levels and markers of oxidative stress were measured in GLO-1-overexpressing MCs (GLO-1-MCs) cultured in high glucose. Furthermore, we also examined levels of high glucose-induced apoptosis in GLO-1-MCs. In glomerular MCs, high glucose levels increased the formation of both MG and argpyrimidine (an MG-derived adduct) as well as GLO-1 expression. GLO-1-MCs had lower intracellular levels of MG accumulation, 8-hydroxy-deoxyguanosine (an oxidative DNA damage marker), 4-hydroxyl-2-nonenal (a lipid peroxidation product), and nitrosylated protein (a marker of oxidative-nitrosative stress) compared to control cells. Expression of mitochondrial oxidative phosphorylation complexes I, II, and III was also decreased in GLO-1-MCs. Furthermore, fewer GLO-1-MCs showed evidence of apoptosis as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling assay, and activation of both poly (ADP-ribose) polymerase 1 cleavage and caspase-3 was lower in GLO-1-MCs than in control cells cultured in high glucose. These results suggest that GLO-1 plays a role in high glucose-mediated signaling by reducing MG accumulation and oxidative stress in diabetes mellitus.  相似文献   

11.
12.
Impaired wound healing is a major diabetes-related complication. Keratinocytes play an important role in wound healing. Multiple factors have been proposed that can induce dysfunction in keratinocytes. The focus of present research is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing human immortalized keratinocyte (HaCaT) cell apoptosis and the cellular mechanism underlying the proapoptotic effect of AOPPs. HaCaT cells were treated with increasing concentrations of AOPP–human serum albumin or for increasing time durations. The cell viability was measured using the thiazolyl blue tetrazolium bromide method, and flow cytometry was used to assess the rate of cell apoptosis. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed through a confocal laser scanning microscope system, and the level of ROS generation was determined using a microplate reader. Nicotinamide adenine dinucleotide phosphate oxidase (NOX)4, extracellular signal–regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and apoptosis-related downstream protein interactions were investigated using the Western blot analysis. We found that AOPPs triggered HaCaT cell apoptosis and MMP loss. After AOPP treatment, intracellular ROS generation increased in a time- and dose-dependent manner. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and poly(ADP-ribose) polymerase (PARP)-1 were activated, whereas anti-apoptotic Bcl-2 protein was downregulated. AOPPs also increased NOX4, ERK1/2, and p38 MAPK expression. Taken together, these findings suggest that extracellular AOPP accumulation triggered NOX-dependent ROS production, which activated ERK1/2 and p38 MAPK, and induced HaCaT cell apoptosis by activating caspase 3 and PARP-1.  相似文献   

13.
Abstract

The generic mitogen-activated protein kinases (MAPK) signaling pathway is shared by four distinct cascades, including the extracellular signal-related kinases (ERK1/2), Jun amino-terminal kinases (JNK1/2/3), p38-MAPK and ERK5. Mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathway is reported to be associated with the cell proliferation, differentiation, migration, senescence and apoptosis. The literatures were searched extensively and this review was performed to review the role of MAPK/ERK signaling pathway in cell proliferation, differentiation, migration, senescence and apoptosis.  相似文献   

14.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

15.
The formation of glucose-derived methylglyoxal (MG), a highly reactive dicarbonyl compound, is accelerated under diabetic conditions. We examined whether MG was capable of inducing apoptosis in Schwann cells (SCs), since recent studies have suggested a potential involvement of apoptotic cell death in the development of diabetic neuropathy. MG induced apoptosis in SCs in a dose-dependent manner, accompanied by a reduction of intracellular glutathione content and activation of the p38 MAPK. Inhibiting the p38 MAPK activation by SB203580 successfully suppressed the MG-induced apoptosis in SCs. Aminoguanidine and N-acetyl-l-cysteine also inhibited the MG-induced p38 MAPK activation and apoptosis along with restoration of the intracellular glutathione content. These results suggest a potential role for MG in SC injury through oxidative stress-mediated p38 MAPK activation under diabetic conditions, and it may serve as a novel insight into therapeutic strategies for diabetic neuropathy.  相似文献   

16.
This study was designed to determine whether sprint exercise activates signaling cascades linked to leptin actions in human skeletal muscle and how this pattern of activation may be interfered by glucose ingestion. Muscle biopsies were obtained in 15 young healthy men in response to a 30-s sprint exercise (Wingate test) randomly distributed into two groups: the fasting (n = 7, C) and the glucose group (n = 8, G), who ingested 75 g of glucose 1 h before the Wingate test. Exercise elicited different patterns of JAK2, STAT3, STAT5, ERK1/2, p38 MAPK phosphorylation, and SOCS3 protein expression during the recovery period after glucose ingestion. Thirty minutes after the control sprint, STAT3 and ERK1/2 phosphorylation levels were augmented (both, P < 0.05). SOCS3 protein expression was increased 120 min after the control sprint but PTP1B protein expression was unaffected. Thirty and 120 min after the control sprint, STAT5 phosphorylation was augmented (P < 0.05). Glucose abolished the 30 min STAT3 and ERK1/2 phosphorylation and the 120 min SOCS3 protein expression increase while retarding the STAT5 phosphorylation response to sprint. Activation of these signaling cascades occurred despite a reduction of circulating leptin concentration after the sprint. Basal JAK2 and p38 MAPK phosphorylation levels were reduced and increased (both P < 0.05), respectively, by glucose ingestion prior to exercise. During recovery, JAK2 phosphorylation was unchanged and p38 MAPK phosphorylation was transiently reduced when the exercise was preceded by glucose ingestion. In conclusion, sprint exercise performed under fasting conditions is a leptin signaling mimetic in human skeletal muscle.  相似文献   

17.
We investigated the activation of mitogen-activated protein kinases (MAPKs) pathways by purinergic stimulation in cardiac myocytes from adult rat hearts. ATPS increased the phosphorylation (activation) of the extracellular signal regulated kinase 1 and 2 (ERK1/2) and p38 MAPK. ERK1/2 and p38 MAPK activation was differential, ERK1/2 being rapid and transient while that of p38 MAPK slow and sustained. Using selective inhibitors, activation of ERK1/2 was shown to involve protein kinase C and MEK1/2 while that of p38 MAPK was regulated by both protein kinase C and protein kinase A. Furthermore, we show that purinergic stimulation induces the phosphorylation of the MAPK downstream target, mitogen- and stress-activated protein kinase 1 (MSK1), in cardiac myocytes. The time course of MSK1 phosphorylation closely follows that of ERK activation. Inhibitors of the ERK and p38 MAPK pathways were tested on the phosphorylation of MSK1 at two different time points. The results suggest that ERKs initiate the response but both ERKs and p38 MAPK are required for the maintenance of the complete phosphorylation of MSK1. The temporal relationship of MSK1 phosphorylation and cPLA2 translocation induced by purinergic stimulation, taken together with previous findings, is an indication that cPLA2 may be a downstream target of MSK1.  相似文献   

18.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

19.
Epithelial to mesenchymal transition (EMT) of tubular cells contributes to the renal accumulation of matrix protein that is associated with diabetic nephropathy. Both high glucose and transforming growth factor-β (TGF-β) are able to induce EMT in cell culture. In this study, we examined the role of the thioredoxin-interacting protein (TXNIP) on EMT induced by high glucose or TGF-β1 in HK-2 cells. EMT was assessed by the expression of α-smooth muscle actin (α-SMA) and E-cadherin and the induction of a myofibroblastic phenotype. High glucose (30 mM) was shown to induce EMT at 72 h. This was blocked by knockdown of TXNIP or antioxidant NAC. Meanwhile, we also found that knockdown of TXNIP or antioxidant NAC inhibited high glucose-induced generation of reactive oxygen species (ROS), phosphorylation of p38 MAPK and ERK1/2 and expression of TGF-β1. HK-2 cells that were exposed to TGF-β1 (4 ng/ml) also underwent EMT. The expression of TXNIP gene and protein was increased in HK-2 cells treated with TGF-β1. Transfection with TXNIP shRNA was able to attenuate TGF-β1 induced-EMT. These results suggested that knockdown of TXNIP antagonized high glucose-induced EMT by inhibiting ROS production, activation of p38 MAPK and ERK1/2, and expression of TGF-β1, highlighting TXNIP as a potential therapy target for diabetic nephropathy.  相似文献   

20.
We investigated the mechanisms underlying the protective effects of loganin against hydrogen peroxide (H(2)O(2))-induced neuronal toxicity in SH-SY5Y cells. The neuroprotective effect of loganin was investigated by treating SH-SY5Y cells with H(2)O(2) and then measuring the reduction in H(2)O(2)-induced apoptosis using 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. Following H(2)O(2) exposure, Hoechst 33258 staining indicated nuclear condensation in a large proportion of SH-SY5Y cells, along with an increase in reactive oxygen species (ROS) production and an intracellular decrease in mitochondria membrane potential (MMP). Loganin was effective in attenuating all the above-stated phenotypes induced by H(2)O(2). Pretreatment with loganin significantly increased cell viability, reduced H(2)O(2)-induced LDH release and ROS production, and effectively increased intracellular MMP. Pretreatment with loganin also significantly decreased the nuclear condensation induced by H(2)O(2). Western blot data revealed that loganin inhibited the H(2)O(2)-induced up-regulation of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase-3, increased the H(2)O(2)-induced decrease in the Bcl-2/Bax ratio, and attenuated the H(2)O(2)-induced release of cytochrome c from mitochondria to the cytosol. Furthermore, pretreatment with loganin significantly attenuated the H(2)O(2)-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). These results suggest that the protective effects of loganin against H(2)O(2)-induced apoptosis may be due to a decrease in the Bcl-2/Bax ratio expression due to the inhibition of the phosphorylation of JNK, p38, and ERK 1/2 MAPKs. Loganin's neuroprotective properties indicate that this compound may be a potential therapeutic agent for the treatment of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号