首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific single-stranded DNA (ssDNA) aptamer (aptamer17) that specifically recognizes differentiated PC12 cells had been previously obtained after 6 rounds of whole cell-based subtractive systematic evolution of ligands by exponential enrichment selection from a random ssDNA library. To further investigate the relationship between the structure and function of this aptamer, 3 truncated ssDNA aptamers were designed according to the predicted secondary structure of aptamer17. Our results show that the stem-loop is the core structure of the aptamers required for specific binding to differentiated PC12 cells, specifically loops I and II. Aptamer17 and the truncated aptamers with this basic structure could bind specifically to differentiated PC12 cells and identify these cells from a mixture of differentiated and undifferentiated PC12 cells. Therefore, truncated forms of aptamer17 may be useful in the clinic to identify undifferentiated and differentiated PC12 cells from a mixture of cells.  相似文献   

2.
Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 1016 different RNA or DNA sequences by 5–10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2′-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers.  相似文献   

3.
The hope of success of therapeutic interventions largely relies on the possibility to distinguish between even close tumor types with high accuracy. Indeed, in the last ten years a major challenge to predict the responsiveness to a given therapeutic plan has been the identification of tumor specific signatures, with the aim to reduce the frequency of unwanted side effects on oncologic patients not responding to therapy. Here, we developed an in vitro evolution-based approach, named differential whole cell SELEX, to generate a panel of high affinity nucleic acid ligands for cell surface epitopes. The ligands, named aptamers, were obtained through the iterative evolution of a random pool of sequences using as target human U87MG glioma cells. The selection was designed so as to distinguish U87MG from the less malignant cell line T98G. We isolated molecules that generate unique binding patterns sufficient to unequivocally identify any of the tested human glioma cell lines analyzed and to distinguish high from low or non-tumorigenic cell lines. Five of such aptamers act as inhibitors of specific intracellular pathways thus indicating that the putative target might be important surface signaling molecules. Differential whole cell SELEX reveals an exciting strategy widely applicable to cancer cells that permits generation of highly specific ligands for cancer biomarkers.  相似文献   

4.
We proposed to use a novel stepwise sequence-constructive SELEX method to develop DNA aptamers that can recognize Globo H which is a tumor-associated carbohydrate antigen. A combinatorial synthetic library that consisted of DNA molecules with randomized regions of 15-bases was used as the starting library for the first SELEX procedure. The input DNA library for the second round of SELEX consisted of the extension of the 5′ and 3′-ends with 7-bases that were randomized from four selected aptamers. The third round of SELEX was performed following the same procedures as described for the second round of SELEX. The experimental results indicate that the binding affinity of DNA aptamers to Globo H was enhanced when using the sequence-constructive SELEX approach. The selectivity of the DNA aptamers for related disaccharides, mannose derivatives, and Globo H analogs demonstrated the ability of the DNA aptamers to discriminate the presence of various glycans with different structures.  相似文献   

5.
目的:建立一种基于Western印迹的指数式富集的配体系统进化(SELEX)技术,用于未纯化蛋白样品核酸适配体筛选。方法:将目的蛋白经SDS-PAGE分离后转移到PVDF膜上,用生物素标记的ss DNA与PVDF膜上的蛋白共同孵育,获得能与靶蛋白特异结合的适配体,最后通过生物素-链霉亲和素-辣根过氧化物酶系统、基因克隆测序、MEME在线软件和RNAstructure软件分析适配体的一、二级结构,并对筛选得到的适配体进行鉴定。结果:经过4轮筛选,获得了能特异识别靶蛋白而不识别无关蛋白的适配体,原库Gp45则与上述蛋白均没有结合。结论:建立了Western印迹-SELEX技术,可用于未纯化蛋白样品核酸适配体筛选。  相似文献   

6.
Protein E (PE) of Haemophilus influenzae is a highly conserved ubiquitous surface protein involved in adhesion to and activation of epithelial cells. The host proteins—vitronectin, laminin, and plasminogen are major targets for PE-dependent interactions with the host. To identify novel inhibitory molecules of PE, we used an in vitro selection method based on systematic evolution of ligands by exponential enrichment known as SELEX in order to select 2′F-modified RNA aptamers that specifically bind to PE. Fourteen selection cycles were performed with decreasing concentrations of PE. Sequencing of clones from the 14th selection round revealed the presence of semiconserved sequence motifs in loop regions of the RNA aptamers. Among these, three aptamers showed the highest affinity to PE in electrophoretic mobility shift assays and in dot blots. These three aptamers also inhibited the interaction of PE with vitronectin as revealed by ELISA. Moreover, pre-treatment of H. influenzae with the aptamers significantly inhibited binding of vitronectin to the bacterial surface. Biacore experiments indicated that one of the aptamers had a higher binding affinity for PE as compared to the other aptamers. Our results show that it is possible to select RNA inhibitors against bacterial adhesins using SELEX in order to inhibit interactions with target proteins.  相似文献   

7.
We succeeded in acquiring two DNA aptamers that selectively recognize tubulin by the SELEX method. A pool of single-stranded oligo-DNAs including a random region of 59 nucleotides was screened by SELEX for tubulin purified from calf-brain as a target. After 20 repetitions of selection round, the library converged on specific T-rich sequences. The binding activity of T-rich clones was analyzed by the SPR sensor to determine their dissociation constants to be in the order of 10 microM.  相似文献   

8.
9.
Human tumor necrosis factor α (hTNFα), a pleiotropic cytokine with activities ranging from host defense mechanisms in infection and injury to severe toxicity in septic shock or other related diseases, is a promising target for drug screening. Using the SELEX (systematic evolution of ligands by exponential enrichment) process, we isolated oligonucleotide ligands (aptamers) with high affinities for hTNFα.Aptamers were selected from a starting pool of 40 randomized sequences composed of about 10^15 RNA molecules. Representative aptamers were truncated to the minimal length with high affinity for hTNFα and were further modified by replacement of 2′-OH with 2′-F and 2′-NH2 at all ribopurine positions. These modified RNA aptamers were resistant to nuclease. The specificity of these aptamers for hTNFα was confirmed, and their activity to inhibit the cytotoxicity of hTNFα on mouse L929 cells was determined. Results demonstrated that four 2′-NH2-modified aptamers bound to hTNFα with high affinity and blocked the binding of hTNFα to its receptor, thus protecting the L929 cells from the cytotoxicity of hTNFα. Oligonucleotide aptamers described here are potential therapeutics and diagnostics for hTNFα-related diseases.  相似文献   

10.
肺癌是发病率和死亡率较高的恶性肿瘤。现阶段,用于肺癌早期诊断的血清肿瘤标志物因其特异性与敏感性均较低,严重影响肺癌的临床诊断和治疗。本文用双向热循环消减指数富集的配基进化(systematic evolution of ligands by exponential enrichment, SELEX)技术,筛选肺癌和非癌血清标志物的核酸适配体,建立肺癌的检测方法,提高诊断和治疗效率。实验用环氧基琼脂磁珠为筛选介质,以非癌混合血清、肺癌混合血清作为双向靶标。应用热循环消减SELEX技术,经19轮筛选分别获得非癌和肺癌血清的特异性核酸适配体。通过高通量测序,得到 40条非癌核酸适配体序列和 41条肺癌核酸适配体序列。从肺癌与非癌血清特异性核酸适配体序列中分别挑选出高丰度的 4条序列,合成后制成检测试剂,经临床血清验证,阳性率为 90%。该检测方法检测灵敏度高,为肺癌的早期诊断和治疗提供了新的分子识别元件。  相似文献   

11.
In vitro selection of 2'-fluoropyrimidine oligonucleotide aptamers was performed against the N-terminal two-domain fragment of mouse VCAM-1. The SELEX procedure enriched the starting pool in a family of homologous sequences. High binding affinity (10nM) of one member of this family, aptamer 12.11, was demonstrated in a filter binding assay.  相似文献   

12.
Overexpression of human epidermal growth factor receptor 2 (HER2) occurs in a large percentage of breast cancers. Monoclonal antibodies targeting HER2 are vastly used for both diagnostic and therapeutic aims. However, identifying a new molecular probe against HER2 with improved diagnostic and therapeutic features is of great importance. In this report, we have applied the cell systematic evolution of ligands by exponential enrichment (SELEX) strategy for 16 selection rounds to generate an enriched pool of aptamers that specifically recognize the HER2 positive cell line. During the Cell SELEX procedure, a human HER2-overexpressing breast cancer cell line and a human HER2 negative breast cancer cell line were used. Our results reveal that polymerase chain reaction (PCR) amplification of random DNA libraries and the selected single-stranded DNA pool in different Cell SELEX rounds are different from what we expect from PCR amplification of homologous DNA. Our results also confirmed previous studies describing positive HER2 status of SK-BR3 and the absence of the HER2 expression in the MDA-MB468. We also developed a new method, Cell enzyme-linked assay, to monitor the enrichment of aptamers in a given round of Cell SELEX. This method would also be useful in other experiments using live cell enzyme-linked immunosorbent assay on adherent cells.  相似文献   

13.
抑制肿瘤坏死因子-α的DNA适配子的筛选与鉴定   总被引:3,自引:0,他引:3  
应用SELEX技术筛选能与TNF结合的DNA适配子。化学合成随机寡聚DNA库,以TNF为靶蛋白,经过12轮SELEX筛选,将所得产物克隆、测序。根据所测序列化学合成寡聚DNA适配子,用生物素_亲和素_辣根过氧化物酶显色系统检测适配子与TNF的结合活性;用鼠L929细胞检测适配子拮抗TNF活性。结果显示,所筛选到的寡聚DNA能与TNF-α高亲和力结合,并能在细胞培养中拮抗TNF-α的细胞毒活性。  相似文献   

14.
Nonstructural protein 3 (NS3) from hepatitis C virus (HCV) is a serine protease that provides an essential function in maturation of the virus by cleaving the nonstructural regions of the viral polyprotein. The goal of this work was to isolate RNA aptamers that bind specifically to the NS3 protease active site in the truncated polypeptide DeltaNS3. RNA aptamers were selected in vitro by systematic evolution of ligands by exponential enrichment (SELEX). The RNA pool for SELEX had a 30-nucleotide randomized core region. After nine selection cycles, a pool of DeltaNS3-specific RNA aptamers were obtained. This RNA pool included 45 clones that divided into three main classes (G9-I, II and III). These classes include the conserved sequence GA(A/U)UGGGAC. These aptamers bind to DeltaNS3 with a binding constant of about 10 nM and inhibit approximately 90% of the protease activity of DeltaNS3 and MBP-NS3 (full-length of NS3 fused with maltose binding protein). In addition, these aptamers inhibited approximately 70% of the MBP-NS3 protease activity in the presence of the NS4A peptide P41. G9-I aptamer appeared to be a noncompetitive inhibitor for DeltaNS3 with a Ki approximately 100 nM in the presence of P41. These results suggest that the pool of selected aptamers have potential as anti-HCV compounds. Mutational analysis of the G9-I aptamer demonstrated that the sequences required for protease inhibition are in stem I, stem III and loop III of the aptamer. These regions include the conserved sequence GA(A/U)UGGGAC.  相似文献   

15.
Oligonucleotide aptamers represent a novel platform for creating ligands with desired specificity, and they offer many potentially significant advantages over monoclonal antibodies in terms of feasibility, cost, and clinical applicability. However, the isolation of high-affinity aptamer ligands from random oligonucleotide pools has been challenging. Although high-throughput sequencing (HTS) promises to significantly facilitate systematic evolution of ligands by exponential enrichment (SELEX) analysis, the enormous datasets generated in the process pose new challenges for identifying those rare, high-affinity aptamers present in a given pool. We show that emulsion PCR preserves library diversity, preventing the loss of rare high-affinity aptamers that are difficult to amplify. We also demonstrate the importance of using reference targets to eliminate binding candidates with reduced specificity. Using a combination of bioinformatics and functional analyses, we show that the rate of amplification is more predictive than prevalence with respect to binding affinity and that the mutational landscape within a cluster of related aptamers can guide the identification of high-affinity aptamer ligands. Finally, we demonstrate the power of this selection process for identifying cross-species aptamers that can bind human receptors and cross-react with their murine orthologs.  相似文献   

16.
Human tumor necrosis factor a (hTNFa), a pleiotropic cytokine with activities ranging from host defense mechanisms in infection and injury to severe toxicity in septic shock or other related diseases, is a promising target for drug screening. Using the SELEX (systematic evolution of ligands by exponential enrichment) process, we isolated oligonucleotide ligands (aptamers) with high affinities for hTNFa. Aptamers were selected from a starting pool of 40 randomized sequences composed of about 1015 RNA molecules. Representative aptamers were truncated to the minimal length with high affinity for hTNFa and were further modified by replacement of 2'-OH with 2'-F and 2'-NH2 at all ribopurine positions. These modified RNA aptamers were resistant to nuclease. The specificity of these aptamers for hTNFa was confirmed, and their activity to inhibit the cytotoxicity of hTNFa on mouse L929 cells was determined. Results demonstrated that four 2'-NH2-modified aptamers bound to hTNFa with high affinity and blocked the  相似文献   

17.
Alternative ligands such as nucleic acid aptamers can be used for pathogen capture and detection and offer advantages over antibodies, including reduced cost, ease of production and modification, and improved stability. DNA aptamers demonstrating binding specificity to Salmonella enterica serovar Typhimurium were identified by whole-cell-systematic evolution of ligands by exponential enrichment (SELEX) beginning with a combinatorial library of biotin-labeled single stranded DNA molecules. Aptamer specificity was achieved using whole-cell counter-SELEX against select non-Salmonella genera. Aptamers binding to Salmonella were sorted, cloned, sequenced, and characterized for binding efficiency. Out of 18 candidate aptamers screened, aptamer S8-7 showed relatively high binding affinity with an apparent dissociation constant (K d value) of 1.73?±?0.54 μM and was selected for further characterization. Binding exclusivity analysis of S8-7 showed low apparent cross-reactivity with other foodborne bacteria including Escherichia coli O157: H7 and Citrobacter braakii and moderate cross-reactivity with Bacillus cereus. Aptamer S8-7 was successfully used as a ligand for magnetic capture of serially diluted Salmonella Typhimurium cells, followed by downstream detection using qPCR. The lower limit of detection of the aptamer magnetic capture-qPCR assay was 102–103?CFU equivalents of Salmonella Typhimurium in a 290-μl sample volume. Mean capture efficiency ranged from 3.6 to 12.6 %. Unique aspects of the study included (a) the use of SELEX targeting whole cells; (b) the application of flow cytometry for aptamer pool selection, thereby favoring purification of ligands with both high binding affinity and targeting abundant cell surface moieties; and (c) the use of pre-labeled primers that circumvented the need for post-selection ligand labeling. Taken together, this study provides proof-of-concept that biotinylated aptamers selected by whole-cell SELEX can be used in a qPCR-based capture-detection platform for Salmonella Typhimurium.  相似文献   

18.
以完整细胞为靶子的SELEX技术研究进展   总被引:2,自引:0,他引:2  
指数富集的配体系统进化(SELEX)是一种从大容量寡核苷酸文库中经反复分离扩增步骤得到针对靶分子的高亲和力、高特异性核酸配基——适配体的体外筛选技术。自1990年以来,SELEX技术得到了迅猛发展,筛选的靶分子已由最初的单一物质发展到完整的动物细胞、细菌病原体等复杂靶子。以完整细胞为靶子的SELEX技术有其独特的技术优势,可以在筛选细胞上特定靶分子未知的情况下进行筛选,为药物筛选、临床诊断、疾病治疗和基础医学研究等带来了新的思路和方法。随着对适配体研究的深入,尤其是纳米材料与其相结合应用,该技术将在肿瘤诊断治疗及微生物检测领域具有更为广泛的应用前景。  相似文献   

19.
两种富集方法相结合对蓖麻毒素进行SELEX筛选研究   总被引:4,自引:0,他引:4  
为了获得能特异识别具有细胞毒性的蓖麻毒素蛋白寡核苷酸适配子,体外构建了含40个随机序列全长87nt的随机ssDNA文库,采用指数富集配基的系统进化(SELEX)技术方法,结合微孔板和亲和树脂两种分离、富集方法,经过数轮筛选,文库与蓖麻毒素的结合率达到了38.5%。结果表明,以亲和树脂为分离介质进行筛选,富集效果非常明显。  相似文献   

20.
SELEX stands for systematic evolution of ligands by exponential enrichment. This method, described primarily in 1990 [Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822; Tuerk, C., Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510] aims at the development of aptamers, which are oligonucleotides (RNA or ssDNA) binding to their target with high selectivity and sensitivity because of their three-dimensional shape. Aptamers are all new ligands with a high affinity for considerably differing molecules ranging from large targets as proteins over peptides, complex molecules to drugs and organic small molecules or even metal ions. Aptamers are widely used, including medical and pharmaceutical basic research, drug development, diagnosis, and therapy. Analytical and separation tools bearing aptamers as molecular recognition and binding elements are another big field of application. Moreover, aptamers are used for the investigation of binding phenomena in proteomics. The SELEX method was modified over the years in different ways to become more efficient and less time consuming, to reach higher affinities of the aptamers selected and for automation of the process. This review is focused on the development of aptamers by use of SELEX and gives an overview about technologies, advantages, limitations, and applications of aptamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号