首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoplexes, which are spontaneously formed complexes between oligonucleotide (ODN) and cationic lipid, can be used to deliver ODNs into cells, both in vitro and in vivo. The present study was aimed at characterizing the interactions associated with the formation of lipoplexes, specifically in terms of electrostatics, hydration and particle size. Large unilamellar vesicles (approximately 100 nm diameter), composed of either DOTAP, DOTAP/cholesterol (mole ratio 1:1) or DOTAP/DOPE (mole ratio 1:1) were employed as a model of cationic liposomes. Neutral vesicles ( approximately 100 nm diameter), composed of DOPC/DOPE (mole ratio 1:1), were employed as control liposomes. After ODN addition to vesicles, at different mole ratios, changes in pH and electrical surface potential at the lipid-water interface were analyzed by using the fluorophore heptadecyl-7-hydroxycoumarin. In separate 'mirror image' experiments, liposomes were added at different mole ratios to fluorescein isothiocyanate-labeled ODNs, thus yielding data about changes in the pH near the ODN molecules induced by the complexation with the cationic lipid. Particle size distribution and turbidity fluctuations were analyzed by the use of photon correlation spectroscopy and static light-scattering, respectively. In additional fluorescent probe studies, TMADPH was used to quantify membrane defects while laurdan was used to measure the level of hydration at the water-lipid interface. The results indicate that mutual neutralization of cationic lipids by ODNs and vice versa is a spontaneous reaction and that this neutralization is the main driving force for lipoplex generation. When lipid neutralization is partial, induced membrane defects cause the lipoplexes to exhibit increased size instability.  相似文献   

2.
In this study, the effect of various unilamellar liposomes on cryopreservation of bovine spermatozoa has been investigated. Liposomes were composed of saturated lipids with various acyl chain lengths: DSPC (18:0), DPPC (16:0), DMPC (14:0), or DLPC (12:0). Alternatively, liposomes were prepared using unsaturated egg phosphatidylcholine (EPC) or DOPC (18:1, neutral), alone or in combination with lipids with various head groups: DOPS (negatively charged), DOPG (negatively charged), and DOPE (neutral). Fourier transform infrared spectroscopy studies showed that bovine sperm membranes display a gradual phase transition from 10 to 24 oC. Phase transition temperatures of the liposomes varied from −20 to +53 oC. Sperm was incubated in the presence of liposomes for either 6 or 24 h at 4 °C prior to freezing. Postfreeze survival rates were determined based on the percentage of progressively motile cells as well as the percentage of acrosome- and plasma membrane-intact cells. With DOPC liposomes a postthaw progressive motility of 43% was obtained compared with 59% using standard egg yolk freezing extender. Postthaw progressive motility increased up to 52% using DOPC:DOPG (9:1) liposomes, whereas DOPC:DOPS or DOPC:DOPE liposomes did not increase survival compared with DOPC liposomes. Among the saturated lipids, only DMPC was found to increase cryosurvival, up to 44% based on progressive motility. DLPC liposomes caused a complete loss in cell viability, already prior to freezing, whereas DPPC and DSPC liposomes neither positively nor negatively affected cryosurvival. Taken together, the higher postthaw survival obtained with DOPC:DOPG liposomes as compared with DOPC liposomes can likely be attributed to increased liposome-sperm interactions between the charged phosphatidylglycerol groups and charged regions in the sperm membranes. Interestingly, the lipid phase state of the liposomes during preincubation is not the decisive factor for their cryoprotective action.  相似文献   

3.
This study was aimed to investigate if and to what extent there is an interplay between lipoplex physicochemical properties and plasmid promoter type affecting transfection efficiency in vitro. To reduce the number of variables only one cell type (NIH3T3 cells), one gene (human growth hormone), one cationic lipid (DOTAP) in a plasmid >85% in supercoiled form, and the same medium conditions were used. The variables of the physicochemical properties included presence and type of helper lipid (DOPE, DOPC, or cholesterol, all in 1:1 mole ratio with DOTAP), size and lamellarity of the liposomes used for lipoplex preparation (large unilamellar vesicles, LUV, versus multilamellar vesicles, MLV), and DNA(-)/cationic lipid(+) charge ratio, all containing the same human growth hormone but differing in their promoter enhancer region. Two of the promoters were of viral origin: (a) SV40 promoter (simian virus early promoter) and (b) CMV promoter (cytomegalovirus early promoter); two were of mammalian cell origin: (c) PABP promoter (human poly(A)-binding protein promoter) and (d) S16 promoter (mouse ribosomal protein (rp) S16 promoter). Transfection studies showed that, irrespective of promoter type, large (> or =500 nm) MLV were superior to approximately 100 nm LUV; the extent of superiority was dependent on liposome lipid composition (larger for 100% DOTAP and DOTAP/DOPE than for DOTAP/DOPC and DOTAP/cholesterol). The optimal DNA(-)/DOTAP(+) charge ratio for all types of lipoplexes used was 0.2 or 0.5 (namely, when the lipoplexes were positively charged). Scoring the six best lipoplex formulations (out of 128 studied) revealed the following order: pCMV (DOTAP/DOPE) > pSV (DOTAP/DOPE)=pCMV(DOTAP/cholesterol)=pS16 (100% DOTAP)=pS16 DOTAP/DOPE > pCMV (DOTAP/DOPC). The lack of trivial consistency in the transfection efficiency score, the pattern of transfection efficiency, and statistical analysis of the data suggest that there is cross-talk between promoter type and lipoplex lipid composition, which may be related to the way the promoter is associated with the lipids.  相似文献   

4.
Membrane phase-separation is a mechanism that biological membranes often use to locally concentrate specific lipid species in order to organize diverse membrane processes. Phase separation has also been explored as a tool for the design of liposomes with heterogeneous and spatially organized surfaces. These “patchy” liposomes are promising platforms for delivery purposes, however their design and optimization through experimentation can be expensive and time-consuming. We developed a computationally efficient method based on the surface Cahn–Hilliard phase-field model to complement experimental investigations in the design of patchy liposomes. The method relies on thermodynamic considerations to set the initial state for numerical simulations. We show that our computational approach delivers not only qualitative pictures, but also accurate quantitative information about the dynamics of the membrane organization. In particular, the computational and experimental results are in excellent agreement in terms of lipid domain area fraction, total lipid domain perimeter over time and total number of lipid domains over time for two different membrane compositions (DOPC:DPPC with a 2:1 M ratio with 20% Chol and DOPC:DPPC with a 3:1 M ratio with 20% Chol). Thus, the computational phase-field model informed by experiments has a considerable potential to assist in the design of liposomes with spatially organized surfaces, thereby containing the cost and time required by the design process.  相似文献   

5.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. We examined the relationship between the characteristics of the lipoplexes, their mode of interaction with monocytic THP-1 cells and their ability to transfect these cells. We determined the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and its mixtures with neutral lipids), and lipoplexes at different (+/-) charge ratios. As the (+/-) charge ratio of the lipoplexes decreased to (1/1), a significant reduction in zeta potential and an increase in size was observed. The increase in size resulted from fusion between liposomes promoted by DNA, as demonstrated by a lipid mixing assay, and from aggregation of the complexes. Interaction of liposomes and lipoplexes with THP-1 cells was assessed by monitoring lipid mixing ('fusion') as well as binding and cell association. While no lipid mixing was observed with the 1/2 (+/-) lipid/DNA complexes, lipoplexes with higher (+/-) charge ratios underwent significant fusion in conjunction with extensive cell binding. Liposome binding to cells was dependent on the positive charge of the liposomes, and their fusion could be modulated by the co-lipid. DOTAP/phosphatidylethanolamine (1:1) liposomes fused with THP-1 cells, unlike DOTAP/phosphatidylcholine (1:1) liposomes, although both liposome types bound to the cells to a similar extent. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. The presence of serum increased the size of the cationic liposomes, but not that of the lipoplexes. Low concentrations of serum (3%) completely inhibited the fusion of cationic liposomes with cells, while inhibiting binding by only 20%. Our results suggest that binding of cationic liposomes and lipoplexes to cells is governed primarily by electrostatic interactions, whereas their fusion is regulated by the lipid composition and sterically favorable interactions with cell surface molecules. In addition our results indicate no correlation between fusion of the lipoplexes with the plasma membrane and the levels of transfection.  相似文献   

6.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

7.
Lipid aggregates are considered promising carriers for macromolecules and toxic drugs. In order to fulfill this function, aggregates should have properties that ensure the efficient delivery of their cargo to the desired location. One of these properties is their stability in blood when accumulating in the targeted tissue. This stability may be affected by a number of factors, including enzymatic activity, protein adsorption, and non-specific lipid exchange between the aggregate and morphological blood components. Since blood cells in the majority consist of erythrocytes, their interaction with aggregates should be carefully analyzed. In this paper, we present a method that allows the exchange of lipid between liposomes and the erythrocyte plasma membrane to be evaluated. The extent of this exchange was measured in terms of the toxicity of a cationic lipid (DOTAP) incorporated into the liposome lipid bilayer, evaluated by plasma membrane mechanical properties. After liposomes were formed from DOTAP/PC or DOTAP/PE mixtures, erythrocyte plasma membranes were destabilized in a manner dependent on DOTAP concentration. A constant quantity of DOTAP mixed with various proportions of SM caused no such effect, indicating very limited lipid exchange with the cell membrane for such liposome formulations.  相似文献   

8.
The development of nonviral gene delivery vehicles for therapeutic applications requires methods capable of quantifying the association between the genes and their carrier counterparts. Here we investigate the potential of fluorescence cross-correlation spectroscopy (FCCS) to characterize and optimize the assembly of nonviral cationic liposome (CL)-DNA complexes based on a CL formulation consisting of the cationic lipid DOTAP and zwitterionic lipid DOPC. We use a DNA plasmid for lipoplex loading encoding the Oct4 gene, critically involved in reprogramming somatic cells into induced pluripotent stem cells. We demonstrate that FCCS is able to quantitatively determine the extent of the association between DNA and the liposomes and assess its loading capacity. We also establish that the cationic lipid fraction, being proportional to the liposome membrane charge density, as well as charge ratio between the CLs and anionic DNA play an important role in the degree of interaction between the liposomes and DNA.  相似文献   

9.
The combination of cationic lipids with cationic peptides and DNA vectors can produce synergistic effects in gene delivery to eukaryotic cells. Binary complexes of cationic lipids with DNA are well-studied whereas little information is available about the structure of the ternary lipid/peptide/DNA (LPD) complexes and mechanisms defining DNA protection and delivery. Here we use synchrotron small angle X-ray scattering and dynamic light scattering zeta-potential measurements to determine structure and the net charge of supramolecular aggregates of complexes in mixtures of plasmid DNA, cationic liposomes formed from DOTAP, plus a linear cationic ε-oligolysine with the pendant α-amino acids Leu-Tyr-Arg (LYR), ε-(LYR)K10. These ternary complexes display multilamellar structures with relatively constant separation between DOTAP bilayers, accommodating a hydrated monolayer of parallel DNA rods. The DNA-DNA distance in the complexes varies as a function of the net positive to negative (lipid+peptide)/DNA charge ratio. An explanation for the observed dependence of DNA-DNA distance on charge ratio was proposed based on general polyelectrolyte properties of non-stoichiometric polycation-DNA mixtures.  相似文献   

10.
By using Fourier transform infrared (FT-IR) spectroscopy in combination with differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), ultrasound velocimetry, Laurdan fluorescence spectroscopy, fluorescence microscopy and atomic force microscopy (AFM), the temperature and pressure dependent phase behavior of the five-component anionic model raft lipid mixture DOPC/DOPG/DPPC/DPPG/cholesterol (20:5:45:5:25 mol%) was investigated. A temperature range from 5 to 65 °C and a pressure range up to 16 kbar were covered to establish the temperature-pressure phase diagram of this heterogeneous model biomembrane system. Incorporation of 10-20 mol% PG still leads to liquid-ordered (l(o))-liquid-disordered (l(d)) phase coexistence regions over a wide range of temperatures and pressures. Compared to the corresponding neutral model raft mixture (DOPC/DPPC/Chol 25:50:25 mol%), the p,T-phase diagram is - as expected and in accordance with the Gibbs phase rule - more complex, the phase sequence as a function of temperature and pressure is largely similar, however. This anionic heterogeneous model membrane system will serve as a more realistic model biomembrane system to study protein interactions with anionic lipid bilayers displaying liquid-disordered/liquid-ordered domain coexistence over a wide range of the temperature-pressure plane, thus allowing also studies of biologically relevant systems encountered under extreme environmental conditions.  相似文献   

11.
To optimize tumor targetability of nanosized liposomes for application as drug carriers, various liposomes are prepared by incorporating different amounts (10, 30, and 50?wt%) of cationic, anionic, and PEGylated lipids into neutral lipid. In vivo near-infrared fluorescence images reveal that PEG-PE/PC liposomes display high tumor accumulation in tumor-bearing mice, while large amounts of DOTAP/PC liposomes are rapidly captured in the liver, resulting in poor tumor accumulation. These results demonstrate that optimization of the surface properties of liposomes is very important for their tumor targetability, and that in vivo imaging techniques are useful in developing and optimizing nanosized liposome-based drug carriers.  相似文献   

12.
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.  相似文献   

13.
Diazeniumdiolate reactivity in model membrane systems.   总被引:1,自引:1,他引:0  
The effect of small unilamellar phospholipid vesicles on the acid-catalyzed dissociation of nitric oxide from diazeniumdiolate ions, R(1)R(2)N[N(O)NO](-), [1: R(1)=H(2)N(CH(2))(3)-, R(2)=H(2)N(CH(2))(3)NH(CH(2))(4)-; 2: R(1)=R(2)=H(2)N(CH(2))(3)-; 3: R(1)=n-butyl-, R(2)=n-butyl-NH2+(CH(2))(6)-; 4: R(1)=R(2)=nPr-] has been examined at pH 7.4 and 37 degrees C. NO release was catalyzed by anionic liposomes (DPPG, DOPG, DMPS, POPS and DOPA) and by mixed phosphatidylglycerol/phosphatidylcholine (DPPG/DPPC and DOPG/DPPC) covesicles, while cationic liposomes derived from 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic liposome DMPC did not significantly affect the dissociation rates of the substrates examined. Enhancement of the dissociation rate constant in DPPG liposome media (0.010M phosphate buffer, pH 7.4, 37 degrees C) at 10mM phosphoglycerol levels, ranged from 37 for 1 to 1.2 for the anionic diazeniumdiolate 4, while DOPA effected the greatest rate enhancement, achieving 49-fold rate increases with 1 under similar conditions. The observed catalysis decreases with increase in the bulk concentration of electrolytes in the reaction media. Quantitative analysis of catalytic effects has been obtained through the application of pseudo-phase kinetic models and equilibrium binding constants at different liposome interfaces are compared. The stoichiometry of nitric oxide release from 1 and 2 in DPPG/DPPC liposome media has been obtained through oxyhemoglobin assay. DPPG=1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], DOPG=1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], DMPS=1,2-dimyristoyl-sn-glycero-3-[phospho-l-serine], POPS=1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine], DOPA=1,2-dioleoyl-sn-glycero-3-phosphate; DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DMPC=1,2-dimyristoyl-sn-glycero-3-phosphocholine, DOTAP=1,2-dioleoyl-3-trimethylammonium-propane.  相似文献   

14.
A 25-mer cationic peptide pleurocidin, isolated from the winter flounder, has broad antibacterial activity. To clarify the structure-activity relationship, its properties and biological activity were examined. CD measurements showed that pleurocidin took an alpha-helical structure in the presence of DOPC/DOPG (3:1, anionic) vesicles. Very weak hemolytic activity of pleurocidin was observed and its antibacterial activity was moderate. Tryptophan fluorescence shift measurements showed that pleurocidin interacted weakly with a neutral phospholipid, but strongly with an acidic phospholipid. The peptide exhibited weak dye-leakage activity for DOPC (neutral) vesicles and moderate activity for acidic vesicles. From experiments on dye-leakage activity and membrane translocation of the peptide, it seemed likely that pleurocidin, like magainin 2, forms pores in the lipid membrane. A study of amino acid substitution in pleurocidin revealed that alpha-helicity, rather than hydrophobicity, affects the properties and activity of the peptide.  相似文献   

15.
Phospholipase A2 hydrolysis of neutral and negatively charged lipid membranes modified by positively charged proteins has been studied using liposomes composed of either dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylglycerol (DOPG) alone or their equimolar mixture in the presence of cytochrome c, histone H1, cytochrome b5, and polylysine. Twenty minutes after the reaction had been initiated, DOPC hydrolysis was 58%, while that in the equimolar mixture with DOPG was 35%. DOPG hydrolysis was more complete in binary mixtures of liposomes. The same was observed for liposomes in the presence of cytochrome c. Hydrolysis of phospholipids in binary liposomes in the presence of histone H1 was 3 times faster than that in protein-free liposomes. In the presence of polylysine the rate of DOPG hydrolysis was decreased. The results obtained are suggestive of electrostatic interactions between hydrophilic proteins and negatively charged phospholipids, the phospholipase A2 catalytic activity being affected by these interactions.  相似文献   

16.
In this paper, two novel carbamate-linked quaternary ammonium lipids (MU18: a lipid with a mono-ammonium head; GU18: a lipid with a Gemini-ammonium head) containing unsaturated hydrophobic chains were designed and synthesized. The chemical structures of the synthetic lipids were characterized by infrared spectrum, ESI-MS, 1H NMR, 13C NMR, and HPLC. For investigating the effect of unsaturation on gene delivery, the previous reported saturated cationic liposomes (MS18 and GS18) were used as comparison. Cationic liposomes were prepared by using these cationic lipids and neutral lipid DOPE at the molar ratio of 1:1. Particle sizes and zeta potentials of the cationic liposomes were studied to show that they were suitable for gene transfection. The binding abilities of the cationic liposomes were investigated by gel electrophoresis at various N/P ratios from 0.5/1 to 8/1. The results indicated that the binding ability of GU18 was much better than MU18 and the saturated cationic liposomes (MS18 and GS18). DNA transfection of these liposomes comparable to commercially available reagent (DOTAP) was achieved in vitro against Hela, HepG-2 and NCI-H460 cell lines. GU18 showed higher transfection at the N/P ratio of 3/1 than other cationic liposomes and the positive control, DOTAP. All of the liposomes presented a relatively low cytotoxicity, which was measured by MTT. Therefore, the synthetic lipids bearing unsaturated hydrophobic chains and Gemini-head could be promising candidates for gene delivery.  相似文献   

17.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

18.
The binding of penetratin, a peptide that has been found useful for cellular delivery of large hydrophilic molecules, to negatively charged vesicles was investigated. The surface charge density of the vesicles was varied by mixing zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylglycerol (DOPG) at various molar ratios. The extent of membrane association was quantified from tryptophan emission spectra recorded during titration of peptide solution with liposomes. A singular value decomposition of the spectral data demonstrated unambiguously that two species, assigned as peptide free in solution and membrane-bound peptide, respectively, account for the spectral data of the titration series. Binding isotherms were then constructed by least-squares projection of the titration spectra on reference spectra of free and membrane-bound peptide. A model based on the Gouy-Chapman theory in combination with a two-state surface partition equilibrium, separating the electrostatic and the hydrophobic contributions to the binding free energy, was found to be in excellent agreement with the experimental data. Using this model, a surface partition constant of approximately 80 M(-)(1) was obtained for the nonelectrostatic contribution to the binding of penetratin irrespective of the fraction of negatively charged lipids in the membrane, indicating that the hydrophobic interactions are independent of the surface charge density. In accordance with this, circular dichroism measurements showed that the secondary structure of membrane-associated penetratin is independent of the DOPC/DOPG ratio. Experiments using vesicles with entrapped carboxyfluorescein showed that penetratin does not form membrane pores. Studies of the cationic peptide penetratin are complicated by extensive adsorption to surfaces of quartz and plastics. By modification of the quartz cell walls with the cationic polymer poly(ethylenimine), the peptide adsorption was reduced to a tolerable level. The data analysis method used for construction of the binding isotherms eliminated errors emanating from the remaining peptide adsorption, which otherwise would prevent a proper quantification of the binding.  相似文献   

19.
Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization.  相似文献   

20.
In many applications, an ability of liposomes to retain drug and then rapidly release it at some later time would be of benefit. In this work, we investigate the ability of cationic large unilamellar vesicles (LUV) to promote rapid release of doxorubicin from anionic LUV. It is shown that the addition of cationic liposomes containing cholesterol, dioleoylphosphatidylethanolamine (DOPE), distearoylphosphatidylcholine (DSPC) and the cationic lipid N,N-dioleyl-N,N-dimethylammonium chloride (DODAC) to doxorubicin-containing LUV composed of cholesterol, DOPE, DSPC and the anionic lipid dioleoyphosphatidylglycerol (DOPG) can result in release of more than 90% of the drug in times of 30 s or less. Further, it is shown that these release characteristics are exquisitely dependent on the presence of DOPE and cholesterol. In the absence of DOPE, much slower release rates are observed, with maximum release levels of 50% after a 2-h incubation at 20 degrees C. Remarkably, threshold levels of more than 10 mol% cholesterol are required before any appreciable release is observed. [31P]NMR spectroscopy and freeze-fracture electron microscopy studies reveal that systems giving rise to rapid release of doxorubicin exhibit limited formation of inverted hexagonal (H(II)) phase, suggesting that these lipids facilitate drug release by formation of local regions of non-bilayer structure. It is concluded that drug release triggered by mixing anionic and cationic liposomes could be of utility in drug delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号