首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文列举了大量具过顶古口缝的沟鞭藻囊孢在海相和非海相沉积中的记录,指出具有一构造的沟鞭藻囊孢可以细分成两个亚类,分别代表晚白垩世从海相澡类家族中分化出的两个分支:一个以Palaceperidinium为代表,具有bipesioid型反映板式;另一支以Saeptodinium为代表,具有bipesioid或cinctioid型反映板式,前者在晚白垩世开始向淡水环境迁移,但仍有部分留在海水中,一直延续  相似文献   

2.
Survival of the sea louse Lepeophtheirus salmonis on juvenile Pacific salmon Oncorhynchus gorbuscha and Oncorhynchus keta was examined with respect to salinity (0, 7, 14, 21 and 28). Rapid mortality was observed in fresh water (0) but motile stage sea lice tolerated higher salinities (7, 14, 21 and 28) for up to 7 days. These findings suggest that salinities juvenile Pacific salmon typically encounter during early marine residence have little affect on motile sea louse survival.  相似文献   

3.
Crocodylids are better adapted than alligatorids, through a suite of morphological specializations, for life in hyperosmotic environments. The presence of such specializations even in freshwater crocodylids has been interpreted as evidence for a marine phase in crocodylid evolution, consistent with the trans-osceanic migration hypothesis of crocodilian biogeography. The ability to discriminate fresh water from hyperosmotic sea water, and to avoid drinking the latter, is known to be an important osmoregulatory mechanism for estuarine crocodylids. This study was undertaken to determine whether the ability to discriminate between hyper- and hypo-osmotic salinities is determined by habitat, as it is in other normally freshwater reptiles, or whether, like morphological adaptations associated with estuarine life, it has a phylogenetic basis. Two species of freshwater alligatorid were found to drink fresh water and hyperosmotic sea water indiscriminately, while an estuarine population of a normally freshwater alligatorid species drank only fresh water. This indicated that salinity discrimination is determined at least in part by habitat. However, all three crocodylid species tested drank fresh water but not hyperosmotic sea water, suggesting that, in crocodilians, the ability to distinguish between fresh water and sea water is influenced by phylogeny as well as by habitat. The implications of this result are discussed in the context of two alternate hypotheses for the historical biogeography of the Crocodilia.  相似文献   

4.
Recent investigations of water balance in sea snakes demonstrated that amphibious sea kraits (Laticauda spp.) dehydrate in seawater and require fresh water to restore deficits in body water. Here, we report similar findings for Pelamis platurus, a viviparous, pelagic, entirely marine species of hydrophiine ("true") sea snake. We sampled snakes at Golfo de Papagayo, Guanacaste, Costa Rica and demonstrated they do not drink seawater but fresh water at variable deficits of body water incurred by dehydration. The threshold dehydration at which snakes first drink fresh water is -18.3 ± 1.1 % (mean ± SE) loss of body mass, which is roughly twice the magnitude of mass deficit at which sea kraits drink fresh water. Compared to sea kraits, Pelamis drink relatively larger volumes of water and make up a larger percentage of the dehydration deficit. Some dehydrated Pelamis also were shown to drink brackish water up to 50% seawater, but most drank at lower brackish values and 20% of the snakes tested did not drink at all. Like sea kraits, Pelamis dehydrate when kept in seawater in the laboratory. Moreover, some individuals drank fresh water immediately following capture, providing preliminary evidence that Pelamis dehydrate at sea. Thus, this widely distributed pelagic species remains subject to dehydration in marine environments where it retains a capacity to sense and to drink fresh water. In comparison with sea kraits, however, Pelamis represents a more advanced stage in the evolutionary transition to a fully marine life and appears to be less dependent on fresh water.  相似文献   

5.
A complex of adaptive changes occurring in the Pacific salmon fry in the process of migration to the sea is described, including behavior, ion content in carcasses, and morphological changes in Stannius bodies, gill epithelium, and nephron tubular epithelium. Participating in experiments with transfer from fresh water into a two-layer aquarium (the lower layer—sea water, the upper layer—fresh water) were smolts of chum salmon and underyearlings of cherry salmon as well as the trachurus and leiurus forms of the three-spined stickleback Casterosteus aculeatus. All fish, regardless of their salt preference, at once after placement into the two-layer aquarium, occupied the sea water zone, at the very bottom of the aquarium. After 1 h, there started brief excursions of cherry salmon and chum salmon to the upper, fresh water layer; however, both forms of the three-spined stickleback did not participate in these excursions. After 12 h, the chum salmon settled down in the lower, sea water layer, while the cherry salmon—in the upper, fresh water layer. Both forms of the three-spined stickleback never left the sea water layer and felt quite comfortably on the aquarium bottom. It seems that the high tolerance of the both stickleback forms to wide salinity limits allows them to choose the convenient position regardless of the water salt composition. By analyzing the material obtained for three years (2001–2003) on structure and functions of the gill epithelium chloride cells (CC), we have come to the conclusion that the fresh water fry of two salmon species, chum and cherry salmons, caught at the same time and practically in the same water reservoirs can be divided into three groups. The underyearlings of the cherry salmon as a rule are characterized by the thickened epithelium of secondary gill lamellae, but by a very small number of CC. In smolts of chum salmon, on the contrary, the epithelium is sufficiently thin, but enriched in the CC that demonstrate an active structure in the very beginning of migration to sea. However, with approaching the sea (and with an increase of terms of migration) the CC activity drops, but their amount does not change. And only after migration to the sea the CC activity rises again, although their amount seems to remain unchanged. The described peculiarities of behavior and of the ion composition regulation in the migrating salmon fry confirm the hypothesis that the salmons evolutionized in fresh water, that the Oncorhynchus genus appeared in large spaces of saltish waters, such as the Japan sea at the period of the early Pleistocene, and that learning of fry of the Oncorhynchus genus (for instance, of O. gorbuscha and O. keta) is the most specialized in the salmons migration to the sea, whereas the fresh water species of chars (Salvelinus) and of trouts (Salmo) are more primitive.  相似文献   

6.
Reproduction of external fertilizing vertebrates is typically constrained to either fresh or salt water, not both. For all studied amphibians and fishes, this constraint includes immotile sperm that are activated after ejaculation only by the specific chemistry of the fertilizing medium in which the species evolved (fresh, brackish, or salt water). No amphibians can reproduce in the sea. Although diadromous fishes may migrate between salt and fresh water, they are shackled to their natal environment for spawning in part because of sperm activation. Here, we report for the first time among all documented external fertilizing vertebrates, that in the absence of any external media, sperm are motile at ejaculation in a marine spawning fish (Osmeridae, capelin, Mallotus villosus). To illuminate why, we evaluated sperm behavior at different salinities in M. villosus as well as the related freshwater spawning anadromous rainbow smelt (Osmerus mordax). Surprisingly, sperm performance was superior in fresh water for both species. M. villosus spend their entire life at sea but our results show that their sperm are deactivated by sea water, suggesting a freshwater ancestry. By circumventing constraining water chemistry, we interpret the unique pre‐ejaculatory sperm activation in this species as a novel adaptation that enables fertilization in the marine environment. These findings also contribute to understanding the persistence of anadromy, despite great energetic costs to adult fishes.  相似文献   

7.
Individual migration behaviour during the juvenile and adult life phase of the anadromous twaite shad Alosa fallax in the Elbe estuary was examined using otolith Sr:Ca and Ba:Ca profiles. Between hatching and the end of the first year of life, juveniles showed two migration patterns. Pattern one exhibited a single downstream migration from fresh water to the sea with no return into fresh water. In contrast, pattern two showed a first migration into the sea, then a return into fresh water and, finally, a second downstream migration into marine water. This first report of migration plasticity for A. fallax points to different exposure times to estuarine threats depending on the migration strategy. In adults, high Sr:Ca and low Ba:Ca in the majority of individuals confirmed prior reports of a primarily marine habitat use. Patterns reflecting spawning migrations were rarely observed on otoliths, possibly due to the short duration of visits to fresh water.  相似文献   

8.
Prodigiosin-Producing Bacteria from Marine Sources   总被引:7,自引:2,他引:5       下载免费PDF全文
  相似文献   

9.
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near‐shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007–2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13C and δ15N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10–20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass‐balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near‐shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008–2009) and years with extensive sea ice breakout (2012–2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near‐shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.  相似文献   

10.
Summary Twenty species of Fungi imperfecti, including strains from freshwater, estuarine and marine habitats in the environs of the middle and lower Neretve River, Yugoslavia, were collected, purified and identified. Strains of nine species from fresh, brackish, and sea water were grown on various NaCl concentrations. These fungi exhibited a wide amplitude of salt tolerance. In general, the strains from fresh water grew best at or were able to tolerate the lower NaCl concentrations. The sea-water strains grew best at and could tolerate the higher NaCl concentrations. Brackish-water strains were found to be more like strains isolated from fresh water than from sea water. Brackish-water strains were able to grow well in zero or low concentrations of NaCl, but they could not do as well at the higher NaCl concentrations. The results of the laboratory experiments with NaCl concentrations support the findings in nature.All twenty species of these fungi were tested for their ability to decompose lignin, utilize phosphate and degrade lecithin. Five species gave a positive reaction on gallic acid medium; five species were able to utilize lecithin; and seven species were active in utilizing tribasic calcium phosphate.  相似文献   

11.
Lillywhite HB  Tu MC 《PloS one》2011,6(12):e28556
Recent studies have shown that sea kraits (Laticauda spp.)--amphibious sea snakes--dehydrate without a source of fresh water, drink only fresh water or very dilute brackish water, and have a spatial distribution of abundance that correlates with freshwater sites in Taiwan. The spatial distribution correlates with sites where there is a source of fresh water in addition to local precipitation. Here we report six years of longitudinal data on the abundance of sea kraits related to precipitation at sites where these snakes are normally abundant in the coastal waters of Lanyu (Orchid Island), Taiwan. The number of observed sea kraits varies from year-to-year and correlates positively with previous 6-mo cumulative rainfall, which serves as an inverse index of drought. Grouped data for snake counts indicate that mean abundance in wet years is nearly 3-fold greater than in dry years, and this difference is significant. These data corroborate previous findings and suggest that freshwater dependence influences the abundance or activity of sea kraits on both spatial and temporal scales. The increasing evidence for freshwater dependence in these and other marine species have important implications for the possible impact of climate change on sea snake distributions.  相似文献   

12.
海洋沉积环境蕴含丰富的微生物资源。对深海难培养微生物的分离培养,不仅有利于深海微生物资源的挖掘与利用,也有利于对深海微生物学的研究。本研究采用多种培养基分离获得细菌菌株纯培养,并通过16S r RNA基因序列鉴定,对我国南海海域1个4 000 m水深的深海表层沉积物样品的可培养细菌多样性进行初探。共设计23种分离培养基,经过选择性分离培养最终获得612株细菌菌株,分别隶属于厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes)的9目10科27个属级类群,可培养优势类群为厚壁菌门,占所有分离物种数量的85.8%,包含13个16S rRNA基因序列相似性低于98%的潜在新物种。海洋琼脂类培养基适合培养不同种类的海洋细菌类群,放线菌选择性分离类合成培养基对放线菌类群的分离效果较好。最终获得一些与具有产抗生素、细胞毒素、高效酶活、耐受不良环境、降解污染物等特殊功能微生物相近的菌株。研究结果表明,该深海沉积物样品的可培养微生物资源、潜在新物种和微生物生理特性丰富多样,研究深海环境难培养微生物的分离策略及其微生物适应生理特性对研究极端环境微生物打下了基础。  相似文献   

13.
We studied the effect of sea water concentration in a culture medium on fungal growth and the production of antimicrobial metabolites. Most of the marine fungal isolates were identified as members of the same genera as terrestrial isolates, such asAspergillus andTrichoderma. Many of the marine fungi isolated grew more abundantly as the sea water concentration increased. The production of antimicrobial materials was improved as the sea water concentration increased. Even though the marine fungi were considered to be similar to fungi from terrestrial environments, from a mycological perspective, the two types have different physiological characteristics. The fungi from marine samples are useful microbial resources in the search for new bioactive compounds.  相似文献   

14.
The post spawning behaviour of sea trout Salmo trutta was studied over a 2 year period in the river and estuary of the River Fowey, south‐west England. Forty‐five sea trout kelts were trapped immediately after spawning in December and intraperitoneally tagged with miniature acoustic transmitters. The subsequent emigration into coastal waters was monitored using acoustic receivers deployed throughout the river catchment. The levels of gill Na+K+ATPase activity in sea trout kelts sampled at the same time as the tagged fish were within the range of 2·5 to 4·5 μmol Pi per mg protein per h indicating that the post‐spawning fish were not physiologically adapted to salt water. The tagged kelts were resident in fresh water between 4 and 70 days before entering the estuary. Sixty two per cent of the tagged kelts subsequently migrated successfully into coastal waters, with a higher success rate for male fish (75%) than females (58%). There was a significant size related difference in the run‐timing of the kelts with the larger fish moving more quickly into coastal waters after spawning than smaller fish. Seaward migration within fresh water was predominantly nocturnal and generally occurred in conjunction with increasing river discharge and rising water temperature. Migration through the estuary continued to be predominantly nocturnal and occurred during an ebbing tide. Residency within the estuary varied amongst individuals although it was invariably short, with most fish moving out into coastal waters within one to two tidal cycles. Five tagged kelts returned from the coastal zone and re‐entered fresh water during April and June. Marine residence time varied between 89 and 145 days (mean 118 days) and the minimum estimated marine survival was c. 18%. One of these sea trout was subsequently recaptured after successfully spawning in the vicinity where it had been previously tagged demonstrating a degree of spawning site fidelity.  相似文献   

15.
In order to establish the distribution and abundance of demersal fishes and of some other benthic organisms on the continental shelf of French Guiana (western central Atlantic), ninety-five bottom trawls were effected at depths ranging from 0 to 60 m in October 1993. A total of one hundred and ten different species were identified including eight decapod crustaceans, two cephalopods, one sea turtle and ninety-nine fishes. Despite the high species richness in benthic macrofauna, most species showed a low count, and only twelve of them comprised more than 80% of total captures. This study has mainly highlighted the existence of a well-pronounced bathymetric zonation. This phenomenon would appear to be linked to environmental factors, especially salinity and substrate granulometry, which are greatly conditioned by fresh water and sediment flowing in large rivers such the Amazon River. The results revealed three distinct faunistic assemblages: a littoral (or shallow-water) community (0-30 m) distributed in coastal estuarine waters characterized by muddy bottoms, a middle-shelf community (30-50 m), and a lower-shelf community (depths > 50 m) distributed in deeper marine waters characterized by sandy bottoms.  相似文献   

16.
Summary Larvae of the marine mosquito,Aëdes togoi Theobald, tolerate environmental salinities ranging from fresh water to 300% sea water. When they were transferred from fresh water to sea water, sodium concentration in the haemolymph increased for the first 2 days and decreased to the seawater-adapted level within 4 days. When transferred from sea water to fresh water, the sodium concentration decreased markedly for the first 2 days and attained the freshwater adapted level after 4 days. When the larvae in sea water were ligated near the anus, they died within 3 days, showing an increased sodium level in the haemolymph. The larvae ligated at the neck lost considerable body weight and died within 4 days.When the anal portion, a terminal portion of the hindgut, was catheterized, the larvae maintained in sea water showed an increase in haemolymph sodium. The anal portion epithelium of the larvae adapted to 100 and 150% sea water demonstrated a strong positive reaction to the histochemical assay for chloride ions, whereas the reaction was negative or weakly positive in freshwater adapted larvae. In the larvae with the anal papillae ligated, a slight increase in haemolymph sodium occurred while in sea water. The anal papillae were weakly positive to chloride ions. Unlike salt-water mosquito larvae of the other species, in which the rectum is considered to be involved in hyperosmotic urine production and the anal papillae appear to be the extrarenal organ, the anal portion inA. togoi larvae seems to play an important role in excretion of excess ions when placed in hyperosmotic media.  相似文献   

17.
The structure, productivity and heterotrophic potential of an extensive microalgal community growing on the underside of sea ice near the Australian Antarctic Station of Casey, are described. Underwater observations made near the Australian Antarctic stations of Davis and Mawson are also reported. This community develops during September, is largely suspended from the bottom surface of annual sea ice and often extends into the underlying water column as conspicuous strands up to 15 cm long. The algal community structure in the strands is dominated by an unidentified tube diatom belonging to the Amphipleura/Berkeleya group and chains of a species of Entomoneis cf. Amphiprora paludosa var. hyperborea (Grunow) Cleve. Unlike previously described bottom ice environments, a brash ice layer under the hard sea ice is absent. Living cells, predominantly Nitzschia frigida Grunow, also occur in microbrine channels in the bottom 3 cm of the ice. Maximal primary production rates of 81 μg C · L-1· h-1 occurred during November, then began declining near the end of December. Minimal rates (2.8 μg C · L-1· h-1) were reached in mid-January and coincided with changes in the physical structure of the sea ice and in the stability of the water column. An abundant epibacterial community associated with the microalgal strands assimilated 3H-labelled amino acids suggesting significant heterotrophic recycling of dissolved organic matter. Turnover times of assimilated amino acids in the bottom ice community averaged 55 h during November while negligible turnover of these substrates occurred in the water column 1.5 m below the ice. These bottom ice communities have higher primary productivity than typical brash ice communities; they are also accessible to marine herbivores and so may be more important to the Antarctic marine food chain than previously supposed.  相似文献   

18.
The viviparous sea snakes (Hydrophiini) are by far the most successful living marine reptiles, with ~ 60 species that comprise a prominent component of shallow-water marine ecosystems throughout the Indo-West Pacific. Phylogenetically nested within the ~ 100 species of terrestrial Australo-Melanesian elapids (Hydrophiinae), molecular timescales suggest that the Hydrophiini are also very young, perhaps only ~ 8-13 Myr old. Here, we use likelihood-based analyses of combined phylogenetic and taxonomic data for Hydrophiinae to show that the initial invasion of marine habitats was not accompanied by elevated diversification rates. Rather, a dramatic three to six-fold increase in diversification rates occurred at least 3-5 Myr after this transition, in a single nested clade: the Hydrophis group accounts for ~ 80% of species richness in Hydrophiini and ~ 35% of species richness in (terrestrial and marine) Hydrophiinae. Furthermore, other co-distributed lineages of viviparous sea snakes (and marine Laticauda, Acrochordus and homalopsid snakes) are not especially species rich. Invasion of the oceans has not (by itself) accelerated diversification in Hydrophiini; novelties characterizing the Hydrophis group alone must have contributed to its evolutionary and ecological success.  相似文献   

19.
In the wild, California sea lions (Zalophus californianus) are exposed to a wide variety of sensory information, which cannot be replicated in captive environments. Therefore, unique procedures are necessary for maintaining physiological and psychological health in nonhuman animals in captivity. The effects of introducing natural scents to captive enclosures have been investigated in a variety of species, yet they have not been examined in marine mammals. This project explored the behavioral effect of scent added to the environment, with the goal of improving the welfare of sea lions in captivity. Two scent types were introduced: (a) natural scents, found in their native environment, and (b) non-natural scents, not found in their native environment. This study examined not only scent enrichment but also the possible evolutionary underpinnings of pinniped olfaction. Scent enrichment was found to significantly impact sea lion behavior as demonstrated by a reduction in pattern swimming, an increase in habitat utilization, and a reduction in stereotypical behavior. However, there were no differences in behavior between natural and non-natural scent conditions.  相似文献   

20.
An isolated population of ~30 Capricorn Yellow Chats (Epthianura crocea macgregori) (Aves: Meliphagidae) occurs on a grassy marine plain (~4000 ha) with complex fresh to hypersaline wetlands bordering unvegetated salt flats and mangroves, the majority less than 2 m above mean sea level (MSL). While there are several species of sedge on the marine plain, only one, a tall salt‐tolerant sedge, Schoenoplectus subulatus, regularly provides tall cover and nesting habitat on the marine plain. Comparison of vegetation data between 2002 and 2018 at four breeding sites showed a loss of S. subulatus at two of the sites in conjunction with persistent extreme hypersalinity. In contrast, sites where S. subulatus recovered had elevated salinity levels coinciding with a drought in 2005–2008, but subsequently returning to pre‐drought levels. Concomitant with the loss of S. subulatus was a substantial decline in Capricorn Yellow Chat abundance. Possible drivers of persistent hypersalinity were an increase in sea level and consequent greater tidal ingress. The two most severely affected sites were relatively close to tidal influence and low points in the landscape. Evaluation of MSL data showed that habitat decline from 2002 to 2018 occurred over a period in which sea level rose by ~80 mm. While it is recognised that other variables are important, this study indicates that if sea‐level rise continues at the 2011–2017 rate of ~8.3 mm per annum, the Curtis Island marine plain will become unsuitable for Capricorn Yellow Chats in the next 60 years or less. Sixty years is likely to be a conservative estimate given that sea‐level rise rates are projected to increase further, as are the influence of more extreme weather events such as drought and storm surges on persistence of key vegetation. Ramifications for other Capricorn Yellow Chat sites and marine plain‐dependent fauna such as shorebirds also need consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号