首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When sperm of the sea urchin, Hemicentrotus pulcherrimus , were exposed to high pH (9.0) sea water, they showed large increases in intracellular Ca2+ ([Ca2+]i) and pH (pHi) and underwent the acrosome reaction (AR) without the aid of the egg jelly. Not only [Ca2+]i increase but also pHi rise did not occur under Ca2+-free conditions. Both the increases in [Ca2+]i and pHi and the AR by high pH were inhibited by a Ca2+ channel blockers, verapamil and nisoldipine, and by a lectin, wheat germ agglutinin (WGA) which interacts with a 220 kD membrane glycoprotein of sperm. These reagents inhibited also the AR by the egg jelly. The inhibitory effects of WGA were immediately canceled by the addition of N-acetyl-D-glucosamine, a sugar which is known to remove WGA from its binding site. These results suggest that 1) the same Ca2+ transport system is activated by high external pH and the egg jelly, 2) increase in [Ca2+]i is prerequisite for the stimulation of the H+-efflux system(s) and 3) the 220 kD WGA-binding membrane protein functions as a regulator protein of Ca2+ transport system.  相似文献   

2.
To gain some understanding of the regulatory mechanism involved in caffeine-induced Ca2+ release in adrenal chromaffin cells, we took advantage of the paradoxical observation that removal of divalent cations potentiated the secretory response to caffeine. We measured the concentration of cytosolic free Ca2+ ([Ca]in) in isolated cat chromaffin cells, by fura-2 microfluorometry, to see whether there was any correlation between the secretory response and the rise in [Ca]in. The caffeine-induced [Ca]in rise and catecholamine secretion were increased by treatment of cells with a divalent cation-deficient solution. These potentiated responses were strongly inhibited either by pretreatment with ryanodine, by the reduction of the external Na+ concentration, or by the addition of Ca2+ channel blockers. Removal of divalent cations caused a large rise in the cytosolic free Na+ concentration ([Na]in), which was measured using SBFI microfluorometry. This rise in [Na]in was reduced either by adding Ca2+ channel blockers or by reducing the external Na+ concentration. These results show a good correlation between caffeine-induced Ca2+ release and [Na]in at the time of stimulation, suggesting that caffeine-induced Ca2+ release is regulated by [Na]in.  相似文献   

3.
The treatment of sea urchin embryos by Zn2+ followed by culture with Zn2+-specific chelators such as ethylenediamine-N, N'-diacetic acid and N-hydroxyethylethylenediamine-N, N', N'-triacetic acid, was performed at various developmental stages to find out specific stages for Zn2+ to induce abnormal differentiation. The treatment with 1 mM ZnSO4 at 20°C during a period including two spans of development between 0 and 8 hr and between 14 and 16 hr post fertilization yielded permanent blastulae. Zn2+-treatment during the former span produced abnormal prisms and plutei with small archenteron. The treatment for a period including only the latter span failed to produce abnormal ones. Zn2+-treatment during a period including the gastrula stage also produced abnormal spherical embryos. Without the culture with these chelators, abnormal embryos were produced by Zn2+-treatment performed at any stages before gastrulation. A high zinc amount in the embryos just after the treatment became as low as in normal embryos soon after the culture with these chelators and was maintained during the culture without them. These results indicate that zinc retention occurs in the Zn2+-treated embryos and causes abnormal differentiation when the treated embryos develop in normal sea water through the Zn2+-specific periods of development.  相似文献   

4.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

5.
In this study, amiodarone, at very low concentrations, produced a clear efflux of K+. Increasing concentrations also produced an influx of protons, resulting in an increase of the external pH and a decrease of the internal pH. The K+ efflux resulted in an increased plasma membrane potential difference, responsible for the entrance of Ca2+ and H+, the efflux of anions and the subsequent changes resulting from the increased cytoplasmic Ca2+ concentration, as well as the decreased internal pH. The Δ tok1 and Δ nha1 mutations resulted in a smaller effect of amiodarone, and Δ trk1 and Δ trk2 showed a higher increase of the plasma membrane potential. Higher concentrations of amiodarone also produced full inhibition of respiration, insensitive to uncouplers and a partial inhibition of fermentation. This phenomenon appears to be common to a large series of cationic molecules that can produce the efflux of K+, through the reduction of the negative surface charge of the cell membrane, and the concentration of this cation directly available to the monovalent cation carriers, and/or producing a disorganization of the membrane and altering the functioning of the carriers, probably not only in yeast.  相似文献   

6.
Abstract: Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 µ M , for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 ± 30 s, whereas recovery time was 216 ± 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p -(trifluoromethoxyphenyl)hydrazone (FCCP; 750 n M ). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 µ M ). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na2+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure.  相似文献   

7.
Abstract: Human NT2-N neurons express Ca2+-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPA-GluRs) and become vulnerable to excitotoxicity when AMPA-GluR desensitization is blocked with cyclothiazide. Although the initial increase in intracellular Ca2+ levels ([Ca2+]i) was 1.9-fold greater in the presence than in the absence of cyclothiazide, Ca2+ entry via AMPA-GluRs in an early phase of the exposure was not necessary to elicit excitotoxicity in these neurons. Rather, subsequent necrosis was caused by a >40-fold rise in [Na+]i, which induced a delayed [Ca2+]i rise. Transfer of the neurons to a 5 m M Na+ medium after AMPA-GluR activation accelerated the delayed [Ca2+]i rise and intensified excitotoxicity. Low-Na+ medium-enhanced excitotoxicity was partially blocked by amiloride or dizocilpine (MK-801), and completely blocked by removal of extracellular Ca2+, suggesting that Ca2+ entry by reverse operation of Na+/Ca2+ exchangers and via NMDA glutamate receptors was responsible for the neuronal death after excessive Na+ loading. Our results serve to emphasize the central role of neuronal Na+ loading in AMPA-GluR-mediated excitotoxicity in human neurons.  相似文献   

8.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

9.
ABSTRACT Trypomastigotes of Trypanosoma cruzi maintain an intracellular Ca2+ concentration([Ca2+]i) of 64 ± 30 nM. Equilibration of trypomastigotes in an extracellular buffer containing 0.5 mM [Ca2+]o (preloaded cells) increased [Ca2+]i < 20 nM whereas total cell Ca2+ increased by 1.5 to 2.0 pmole/cell. This amount of Ca2+ would be expected to increase [Ca2+]i to > 10 μM suggesting active sequestration of Ca2+. We tested the hypothesis that maintenance of [Ca2+]i involved both the sequestration into intracellular storage sites and extrusion into the extracellular space. Pharmacological probes known to influence [Ca2+]i through well characterized pathways in higher eukaryotic cells were employed. [Ca2+], responses in the presence or absence of [Ca2+]o were measured to asses the relative contribution of sequestration or extrusion processes in [Ca2+]i homeostasis. In the presence of 0.5 mM [Ca2+]o, the ability of several agents to increase [Ca2+]i was magnified in the order ionomycin ? nigericin > thapsigargin > monensin > valinomycin. In contrast, preloading markedly enhanced the increase in [Ca2+], observed only in response to monensin. Manoalide, an inhibitor of phospholipase A2, enhanced the accumulation of [Ca2+]i due to all agents tested, particularly ionomycin and thapsigargin. Our results suggest that sequestration of [Ca2+]i involved storage sites sensitive to monensin and ionomycin whereas extrusion of Ca2+ may involve phospholipase A2 activity. A Na+/Ca2+ exchange mechanism did not appear to contribute to Ca2+ homeostasis.  相似文献   

10.
Betula papyrifera Marsh, seedlings adapted very poorly to flooding for up to 60 days. Responses to flooding included increased ethylene production; stomatal closure; leaf senescence; drastic inhibition of shoot growth, cambial growth, and root growth; decay of roots, and death of many seedlings. Flooding inhibited growth of leaves that formed prior to flooding, inhibited formation of new leaves, and induced abscission of old leaves. As a result of extensive leaf abscission, fewer leaves were present after flooding than before flooding was initiated. The drastic reduction in leaf area was associated with greatly decreased growth of the lower stem and roots. No evidence was found of adaptive morphological changes to flooding. The data indicate that intolerance of B. papyrifera seedlings to flooding is an important barrier to regeneration of the species on sites subject to periodic inundation.  相似文献   

11.
Spermatozoa of the sea urchin, Hemicentrotus pulcherrimus (108 cells/ml), preincubated with unfertilized eggs deprived of jelly coats (more than l05 cells/ml) at 20°C for 20min in Mg2+ free artificial sea water containing 1 mM Ca2+ (MFASW), exhibited very low respiration, which was enhanced by 2, 4 dinitrophenol (DNP). The fertilization rate in MFASW was usually less than 5% and was about 25% at most. Preincubation with fertilized eggs (with and without a fertilization membrane) in MFASW did not reduced the respiratory rate of spermatozoa. The rate of sperm respiration was lower in MFASW than in artificial sea water (ASW), but was higher than the respiratory rate of spermatozoa preincubated in MFASW with unfertilized eggs. Sperm respiration in MFASW or in ASW was not stimulated by 2, 4 dinitrophenol. Almost complete inhibition of sperm respiration was obtained with unfertilized eggs fixed with glutaraldehyde at concentrations of above 105 cells/ml in MFASW and of about l04 cells/ml in ASW. The respiratory rate of spermatozoa treated with fixed eggs was enhanced by DNP. It is concluded that the respiratory rate of the spermatozoa is reduced by their interaction with unfertilized eggs before their penetration into the eggs.  相似文献   

12.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

13.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

14.
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx.  相似文献   

15.
16.
In the rat pilocarpine model, 1 h of status epilepticus caused significant inhibition of Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in cortex endoplasmic reticulum (microsomes) isolated immediately after the status episode. The rat pilocarpine model is also an established model of acquired epilepsy. Several weeks after the initial status epilepticus episode, the rats develop spontaneous recurrent seizures, or epilepsy. To determine whether inhibition of Ca(2+) uptake persists after the establishment of epilepsy, Ca(2+) uptake was studied in cortical microsomes isolated from rats displaying spontaneous recurrent seizures for 1 year. The initial rate and total Ca(2+) uptake in microsomes from epileptic animals remained significantly inhibited 1 year after the expression of epilepsy compared to age-matched controls. The inhibition of Ca(2+) uptake was not due to individual seizures nor an artifact of increased Ca(2+) release from epileptic microsomes. In addition, the decreased Ca(2+) uptake was not due to either selective isolation of damaged epileptic microsomes from the homogenate or decreased Mg(2+)/Ca(2+) ATPase protein in the epileptic microsomes. The data demonstrate that inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in the pilocarpine model may underlie some of the long-term plasticity changes associated with epileptogenesis.  相似文献   

17.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

18.
Abstract: We investigated the modulation of (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced increases in intracellular free Ca2+ ([Ca2+]i) and intracellular free Mg2+ ([Mg2+]i) by cyclothiazide and GYKI 52466 using microspectrofluorimetry in single cultured rat brain neurons. AMPA-induced changes in [Ca2+]i were increased by 0.3–100 µ M cyclothiazide, with an EC50 value of 2.40 µ M and a maximum potentiation of 428% of control values. [Ca2+]i responses to glutamate in the presence of N -methyl- d -aspartate (NMDA) receptor antagonists were also potentiated by 10 µ M cyclothiazide. The response to NMDA was not affected, demonstrating specificity of cyclothiazide for non-NMDA receptors. Almost all neurons responded with an increase in [Ca2+]i to both kainate and AMPA in the absence of extracellular Na+, and these Na+-free responses were also potentiated by cyclothiazide. GYKI 52466 inhibited responses to AMPA with an IC50 value of 12.0 µ M . Ten micromolar cyclothiazide significantly decreased the potency of GYKI 52466. However, the magnitude of this decrease in potency was not consistent with a competitive interaction between the two ligands. Cyclothiazide also potentiated AMPA- and glutamate-induced increases in [Mg2+]i. These results are consistent with the ability of cyclothiazide to decrease desensitization of non-NMDA glutamate receptors and may provide the basis for the increase in non-NMDA receptor-mediated excitotoxicity produced by cyclothiazide.  相似文献   

19.
[14C]Acetylcholine (ACh) release and parallel alterations in 45Ca2+ uptake and intrasynaptosomal free CA2+ concentration ([Ca2+]i) were measured in guinea-pig brain cortex synaptosomes. Depolarization by high K+ concentrations caused a rapid transient increase in Ca2+ uptake, terminating within 60 s (rate constant = 0.060 s-1; t1/2 = 11.6 s). This resulted in a rapid increase (within 1 s) in [Ca2+1]i, which then fell to a maintained but still-elevated plateau level (t1/2 for the decline was 15 s). Peaks of [Ca2+]i showed a sigmoidal dependence on depolarization, contrasting with the simple linear dependence of plateau levels of [Ca2+]i. The K+-evoked ACh release also had two phases: a fast initial increase (t1/2 = 11.3 s), which terminated within 60 s, was followed by a slow additional increase during sustained depolarizations of up to 10 min. Depolarization by veratridine led to a slow gradual increase in Ca2+ uptake (t1/2 = 130 s) over a 10-min incubation period, whereas an elevated plateau level of [Ca2+]i was achieved within 2 min (without a rapid peak elevation). The Ca2+-dependent fraction of the veratridine-evoked ACh release correlated with the increase in [Ca2+]i rather than with Ca2+ uptake. Using two different methods of depolarization partially circumvented the time limitations imposed by a buffering Ca2+ indicator and we suggest that, in the main, ACh is released in bursts associated with [Ca2+]i transients.  相似文献   

20.
The role of natural and synthetic auxins in regulation of ion transport and ATPase activity was studied in rice roots (Oryza sativa L. cv. Dunghan Shah). In vivo treatment of seedlings with 2,4-dichlorophenoxyacetic acid at 2 × 10?6M for a short period enhanced subsequent Ca2+ stimulated K+ influx and ATPase activity, while a longer treatment diminished both K+ influx and ATPase activity. Indoleacetic acid at 10?10–10?8M induced ATPase activity. In in vitro experiments both 2,4-dichloro phenoxyacetic acid and indoleacetic acid (10?10–10?8M) stimulated Ca2+, K+-ATPase activity of a plasmalemma rich micro somal fraction from the roots. Acetone extracted ATPase preparations lost their activity. The enzyme regained its activity and its sensitivity towards ions (Ca2++ K+) when reconstituted with phosphatidyl choline. Addition of auxins also indicated that the presence of the lipid was necessary in the interaction between the ATPase and auxins. Auxins and ions probably interact with the intact ATPase lipoprotein complex, which may possess a receptor site for the auxins, possibly as a sub unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号