首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to determine the mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque (or force) relationships during isokinetic and isometric muscle actions of the biceps brachii. Ten adults (mean +/- SD age = 21.6 +/- 1.7 years) performed submaximal to maximal isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects randomly performed submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Polynomial regression analyses indicated that MMG amplitude increased linearly with torque during both the isokinetic (r2 = 0.982) and isometric (r2 = 0.956) muscle actions. From 80% to 100% of isometric MVC, however, MMG amplitude appeared to plateau. Cubic models provided the best fit for the MMG MPF versus isokinetic (R2 = 0.786) and isometric (R2 = 0.940) torque relationships, although no significant increase in MMG MPF was found from 10% to 100% of isokinetic PT. For the isometric muscle actions, however, MMG MPF remained relatively stable from 10% to 50% MVC, increased from 50% to 80% MVC, and decreased from 80% to 100% MVC. The results demonstrated differences in the MMG amplitude and MPF versus torque relationships between the isokinetic and isometric muscle actions. These findings suggested that the time and frequency domains of the MMG signal may be useful for describing the unique motor control strategies that modulate dynamic versus isometric torque production.  相似文献   

2.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

3.
The purpose of this investigation was to determine the mechanomyography (MMG) and electromyography (EMG) amplitude and mean power frequency (MPF) vs. eccentric isokinetic torque relationships for the biceps brachii muscle. Nine adults (mean +/- SD age = 23.1 +/- 2.9 years) performed submaximal to maximal eccentric isokinetic muscle actions of the dominant forearm flexors. After determination of isokinetic peak torque (PT), the subjects randomly performed submaximal step muscle actions in 10% increments from 10 to 90% PT. Polynomial regression analyses indicated that the MMG amplitude vs. eccentric isokinetic torque relationship was best fit with a quadratic model (R(2) = 0.951), where MMG amplitude increased from 10 to 60% PT and then plateaued from 60 to 100% PT. There were linear increases in MMG MPF (r(2) = 0.751) and EMG amplitude (r(2) = 0.988) with increases in eccentric isokinetic torque, but there was no significant change in EMG MPF from 10 to 100% PT. The results suggested that for the biceps brachii, eccentric isokinetic torque was increased to approximately 60% PT through concurrent modulation of the number of active motor units and their firing rates, whereas additional torque above 60% PT was produced only by increases in firing rates. These findings contribute to current knowledge of motor-control strategies during eccentric isokinetic muscle actions and could be useful in the design of training programs.  相似文献   

4.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

5.
This study compared the patterns of mechanomyographic (MMG) amplitude and mean power frequency vs. torque relationships in men and women during isometric muscle actions of the biceps brachii. Seven men (mean age 23.9 +/- 3.5 yrs) and 8 women (mean 21.0 +/- 1.3 yrs) performed submaximal to maximal isometric muscle actions of the dominant forearm flexors. Following determination of the isometric maximum voluntary contraction (MVC), they randomly performed submaximal step muscle actions in 10% increments from 10% to 90% MVC. Polynomial regression analyses indicated that the MMG amplitude vs. isometric torque relationship for the men was best fit with a cubic model (R(2) = 0.983),,where MMG amplitude increased slightly from 10% to 20% MVC, increased rapidly from 20% to 80% MVC, and plateaued from 80% to 100% MVC. For the women, MMG amplitude increased linearly (r(2) = 0.949) from 10% to 100% MVC. Linear models also provided the best fit for the MMG mean power frequency vs. isometric torque relationship in both the men (r(2) = 0.813) and women (r(2) = 0.578). The results demonstrated gender differences in the MMG amplitude vs. isometric torque relationship, but similar torque-related patterns for MMG mean power frequency. These findings suggested that the plateau in MMG amplitude at high levels of isometric torque production for the biceps brachii in the men, but not the women, may have been due to greater isometric torque, muscle stiffness, and/or intramuscular fluid pressure in the men, rather than to differences in motor unit activation strategies for modulating isometric torque production.  相似文献   

6.
The purpose of this investigation was to determine the effect of hyperhydration on the electromyographic (EMG) and mechanomyographic (MMG) responses during isometric and isokinetic muscle actions of the biceps brachii. Eight (22.1 +/- 1.8 years, 79.5 +/- 22.8 kg) subjects were tested for maximal isometric, submaximal isometric, and maximal concentric isokinetic muscle strength in either a control (C) or hyperhydrated (H) state induced by glycerol ingestion while the EMG and MMG signals were recorded. Although fluid retention was significantly greater during the H protocol, the analyses indicated no change in torque, EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, or MMG MPF with hyperhydration. These results indicated that glycerol-induced fluid retention does not affect the torque-producing capabilities of a muscle, the impulses (EMG) going to a muscle, or muscular vibrations (MMG). It has been suggested that EMG and MMG can be used as direct electrical/mechanical monitoring, which could be presented to trainers and athletes; however, before determining the utility of these signals, the MMG and EMG responses should be examined under a variety of conditions such as in the present study.  相似文献   

7.
The aim of this study was to compare mechanomyogram (MMG) recorded by a condenser microphone (MIC) and an accelerometer (ACC) during submaximal isometric, concentric and eccentric contractions in 14 males. The maximal voluntary force (MVC) of the biceps brachii was measured. The subjects were asked to do short duration isometric, concentric and eccentric contraction at 10%, 30%, 50%, 70% MVC twice. For the concentric and eccentric contraction, the subject bent his arm for 3s (concentric) then held it for 3s and extended (eccentric) during 3s. The normalized root mean square (RMS) and mean power frequency (MPF) increased linearly with increased force for both transducers. There was a correlation between MIC MPF and ACC MPF at 10%, 30%, 50% MVC, and between MIC RMS and ACC RMS at 30% MVC during isometric contractions. There was significantly higher MPF for the ACC than for the MIC in concentric and eccentric modes, while the RMS did not differ among transducers in the three contraction modes. The RMS and MPF values coefficient of variations were significantly larger during anisometric contractions compared with isometric contractions and were lower for the accelerometer than for the microphone. The present results obtained during isometric, concentric and eccentric contractions of increased intensity showed that the information contained in microphone- and accelerometer-based MMG signals is different despite similar trends. It can be concluded that at low-moderate movement velocity, concentric contractions can be investigated by means of accelerometer and microphone.  相似文献   

8.
The purpose of this study was to examine the electromyographic (EMG) instantaneous amplitude (IA) and instantaneous mean power frequency (IMPF) patterns for the biceps brachii muscle across a range of motion during maximal and submaximal concentric isokinetic muscle actions of the forearm flexors. Ten adults (mean +/- SD age = 22.0 +/- 3.4 years) performed a maximal and a submaximal [20% peak torque (PT)] concentric isokinetic forearm flexion muscle action at a velocity of 30 degrees s(-1). The surface EMG signal was detected from the biceps brachii muscle with a bipolar electrode arrangement, and the EMG IA and IMPF versus time relationships were examined for each subject using first- and second-order polynomial regression models. The results indicated that there were no consistent patterns between subjects for EMG IA or IMPF with increases in torque across the range of motion. Some of the potential nonphysiological factors that could influence the amplitude and/or frequency contents of the surface EMG signal during a dynamic muscle action include movement of the muscle fibers and innervation zone beneath the skin surface, as well as changes in muscle fiber length and the thickness of the tissue layer between the muscle and the recording electrodes. These factors may affect the EMG IA and IMPF patterns differently for each subject, thereby increasing the difficulty of drawing any general conclusions regarding the motor control strategies that increase torque across a range of motion.  相似文献   

9.
The purpose of this study was to examine the strength, electromyographic (EMG), and mechanomyographic (MMG) responses after workouts designed to elicit fatigue and muscle damage vs. only fatigue. Thirteen men (mean ± SD age = 23.7 ± 2.2 years) performed 6 sets of 10 maximal concentric isokinetic (CONexercise) or eccentric isokinetic (ECCexercise) muscle actions of the dominant forearm flexors on 2 separate days. Before (PRE) and after (POST) these workouts, peak torque (PT), surface EMG, and MMG signals were measured during maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the forearm flexors. The subjects also visited the laboratory for a control (CTL) visit with quiet resting between the PRE and POST measurements, rather than performing the CONexercise or ECCexercise. The results showed that there were significant 26 and 25% decreases in PT after the CONexercise and ECCexercise, respectively, and these decreases were statistically equivalent for the concentric, eccentric, and isometric muscle actions. There were also 19 and 23% reductions in normalized EMG amplitude after the CONexercise and ECCexercise, respectively, but no changes in EMG mean frequency (MNF), MMG amplitude, or MMG MNF. These findings demonstrated a neural component(s) to the strength decrement after CONexercise and ECCexercise. It is possible that after these 2 types of exercise, activation of free nerve endings that are sensitive to muscle damage and pH changes resulted in inhibition of alpha motor neurons, causing decreased muscle activation and torque. These findings suggest that training programs designed to minimize strength loss during competition should consider the fact that at least some of this loss is because of neural factors.  相似文献   

10.
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.  相似文献   

11.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

12.
The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG.  相似文献   

13.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

14.
When using electromyographic techniques in the evaluation of muscular load it is necessary to determine the mathematical relationship between the torque and the amplitude of the electromyographic signal. Isometric gradually increasing contractions up to 100% MVC can then be used. Often more than linear increases for the amplitude (RMS)--force regression have been reported. The present study was designed to test whether changes in power spectral density function take place during a gradually increasing isometric contraction (duration 10 s). Twenty-two clinically healthy females performed an increasing isometric shoulder forward flexion for 10 s using an isokinetic dynamometer. Electromyographic activity was measured in trapezius, deltoid, infraspinatus and biceps brachii using surface electrodes. Mean torque values were determined together with mean power frequency (MPF) and root mean square values (RMS) from the EMG signals for each 256 ms period. The RMS-torque regressions showed higher regression coefficients during the 6th to 9th sec than during the first 5 s. No significant correlation existed between MPF for the four muscles and the torque. A gradual decrease in MPF was generally found from the 6th s. It is concluded that this decrease in power spectral density function might have contributed to the significantly higher regression coefficient for the RMS torque regression at the high output part of the gradually increasing isometric contraction.  相似文献   

15.
The purpose of this study was to examine the responses of peak torque (PT), mean power output (MP), mechanomyographic (MMG) and electromyographic (EMG) amplitudes, and mean power frequencies (MPFs) of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) in men and women during dynamic muscle actions. Twelve women (mean +/- SD age = 22 +/- 3 years) and 11 men (22 +/- 3 years) performed maximal, concentric, isokinetic leg extensions at velocities of 60, 120, 180, 240, and 300 degrees x s(-1) on a Cybex 6000 dynamometer. Piezoelectric MMG-recording sensors and bipolar surface EMG electrodes were placed over the VL, RF, and VM muscles. No sex-related differences were found among the velocity-related patterns for PT, MP, MMG amplitude, MMG MPF, or EMG MPF. There were, however, sex-related differences in the patterns of EMG amplitude across velocity. The results indicated similar velocity-related patterns of increase of MP and MMG amplitude for all 3 muscles and of EMG amplitude for the VL and VM in the women. Velocity-related decreases (p 0.05) across velocity. MMG MPF increased (p < or = 0.05) only between 240 and 300 degrees x s(-1). Overall, these findings suggested that there were sex- and muscle-specific, velocity-related differences in the associations among motor unit activation strategies (EMG amplitude and MPF) and the mechanical aspects of muscular activity (MMG amplitude and MPF). With additional examination and validation, however, MMG may prove useful to practitioners for monitoring training-induced changes in muscle power output.  相似文献   

16.
The purpose of this study was to examine the effects of 2 days of isokinetic training of the forearm flexors and extensors on strength and electromyographic (EMG) amplitude for the agonist and antagonist muscles. Seventeen men (mean +/- SD age = 21.9 +/- 2.8 years) were randomly assigned to 1 of 2 groups: (a) a training group (TRN; n = 8), or (b) a control group (CTL; n = 9). The subjects in the TRN group were tested for maximal isometric and concentric isokinetic (randomly ordered velocities of 60, 180, and 300 degrees x s(-1)) torque of the dominant forearm flexors and extensors before (pretest) and after (posttest) 2 days of isokinetic strength training. Each training session involved 6 sets of 10 maximal concentric isokinetic muscle actions of the forearm flexors and extensors at a velocity of 180 degrees x s(-1). The subjects in the CTL group were also tested for strength but did not perform any training. Surface EMG signals were detected from the biceps brachii and triceps brachii muscles during the strength testing. The results indicated that there were no significant (p > 0.05) pre- to post-test changes in forearm flexion and extension torque or EMG amplitude for the agonist and antagonist muscles. Thus, unlike previous studies of the quadriceps femoris muscles, these findings for the forearm flexors and extensors suggested that 2 days of isokinetic training may not be sufficient to elicit significant increases in strength. These results may have implications for the number of visits that are required for rehabilitation after injury, surgery, or both.  相似文献   

17.
The purposes of this investigation were to examine the effects of electrode placement and innervation zone (IZ) location on: (a) the torque-related patterns of responses for absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) and (b) the mean absolute and normalized EMG amplitude and MPF values. In addition, the present study examined the variability between subjects for the location of the IZ for the vastus lateralis (VL). Eight men (mean+/-SD age=23.0+/-4.3yr) performed submaximal to maximal isometric muscle actions of the dominant leg extensors. During each muscle action, fifteen channels of bipolar surface EMG signals were detected from the vastus lateralis using a linear electrode array aligned with the long axis of the muscle fibers. The results indicated that there were differences among channels 1-15 for the patterns of responses and mean values for absolute and normalized EMG amplitude and MPF versus isometric torque. Thus, normalized EMG amplitude and MPF values from different individuals cannot be compared if the EMG signals were detected from different locations over the muscle. In addition, absolute and relative (to femur length) estimates of IZ location for the VL resulted in similar inter-subject variability.  相似文献   

18.
The purpose of this study was to examine the time-of-day effects on muscle fatigue and recovery process following an isometric fatiguing contraction. Sixteen male subjects were tested at two times (06:00h and 18:00h) and were requested to perform a sustained submaximal contraction of the elbow flexors, consisting in maintaining 40% of their absolute strength as long as they could. Isometric maximal voluntary contractions (MVC) were performed before (Pre), immediately after (Post), and up to 10min after the endurance task. Endurance time, peak torque (PT) and electromyographic (EMG) activities of the biceps brachii and triceps brachii were recorded and analysed. Results showed that under Pre-test conditions, PT developed at 18:00h was higher than at 06:00h. No time-of-day effect appears for the endurance time and EMG activities during the test. No time-of-day effect was observed on either MVC or EMG recovery. From the results of this study, it seems that both muscle fatigue and recovery process are not time-of-day dependent. We conclude that circadian rhythm of the force do not influence the evaluation of muscle capacities during a submaximal exercise corresponding at 40% of MVC.  相似文献   

19.
The primary purpose of the present study was to compare the fast Fourier transform (FFT) with the discrete wavelet transform (DWT) for determining the mechanomyographic (MMG) and electromyographic (EMG) center frequency [mean power frequency (mpf), median frequency (mdf), or wavelet center frequency (cf)] patterns during fatiguing isokinetic muscle actions of the biceps brachii. Seven men (mean+/-SD age=23+/-3 years) volunteered to perform 50 consecutive maximal, concentric isokinetic muscle actions of the dominant forearm flexors at a velocity of 180 degrees s(-1). Non-parametric "run" tests indicated significant (p<0.05) trends in the MMG and EMG signals for the 5th, 25th, and 45th muscle actions for all subjects, thereby confirming non-stationarity of the MMG and EMG signals. There were significant (p<0.05) correlations among the average normalized mpf, mdf, and cf values for contractions 1-50 for both MMG (r=0.671-0.935) and EMG (r=0.956-0.987). Polynomial regression analyses demonstrated quadratic decreases in normalized MMG mpf (R2=0.439), MMG mdf (R2=0.258), MMG cf (R2=0.359), EMG mpf (R2=0.952), EMG mdf (R2=0.914) and EMG cf (R2=0.888) across repetitions. The primary finding of this study was the similarity in the mpf, mdf, and cf patterns for both MMG and EMG, which suggested that, despite the concerns over non-stationarity, Fourier based methods are acceptable for determining the patterns for normalized MMG and EMG center frequency during fatiguing dynamic muscle actions at moderate velocities.  相似文献   

20.
The purpose of this study was to determine the effect of an acute static stretching bout of the biceps brachii on torque, electromyography (EMG), and mechanomyography (MMG) during concentric isokinetic muscle actions. Eighteen (men, n = 10; women, n = 8) adult subjects (M +/- SD age = 22.7 +/- 2.8 years; weight = 78.0 +/- 17.0 kg; height = 177.9 +/- 11.0 cm) performed maximal isokinetic (30 and 270 degrees.s(-1)) forearm flexion strength testing on 2 occasions while EMG and MMG were recorded. Subjects were randomly assigned to stretching (STR) or nonstretching (NSTR) protocols before strength testing. Two-way ANOVAs with repeated measures revealed significantly (p < or = 0.05) greater torque for NSTR (M +/- SEM = 36.9 +/- 3.3 N.m) vs. STR (35.2 +/- 3.3 N.m), significantly greater MMG amplitude for STR vs. NSTR for 30 degrees.s(-1) (STR = 93.5 +/- 14.4 mV; NSTR = 63.1 +/- 10.6 mV) and 270 degrees.s(-1) (STR = 207.6 +/- 35.6 mV; NSTR = 136.4 +/- 31.7 mV), and no difference in EMG amplitude. These results indicate that a greater ability to produce torque without prior stretching is related to the musculotendinous stiffness of the muscle rather than the number of motor units activated. This suggests that performing activities that reduce muscle stiffness (such as stretching), may be detrimental to performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号