首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current genetic and recombination maps of the cat have fewer than 3,000 markers and a resolution limit greater than 1 Mb. To complement the first-generation domestic cat maps, support higher resolution mapping studies, and aid genome assembly in specific areas as well as in the whole genome, a 15,000(Rad) radiation hybrid (RH) panel for the domestic cat was generated. Fibroblasts from the female Abyssinian cat that was used to generate the cat genomic sequence were fused to a Chinese hamster cell line (A23), producing 150 hybrid lines. The clones were initially characterized using 39 short tandem repeats (STRs) and 1,536 SNP markers. The utility of whole-genome amplification in preserving and extending RH panel DNA was also tested using 10 STR markers; no significant difference in retention was observed. The resolution of the 15,000(Rad) RH panel was established by constructing framework maps across 10 different 1-Mb regions on different feline chromosomes. In these regions, 2-point analysis was used to estimate RH distances, which compared favorably with the estimation of physical distances. The study demonstrates that the 15,000(Rad) RH panel constitutes a powerful tool for constructing high-resolution maps, having an average resolution of 40.1 kb per marker across the ten 1-Mb regions. In addition, the RH panel will complement existing genomic resources for the domestic cat, aid in the accurate re-assemblies of the forthcoming cat genomic sequence, and support cross-species genomic comparisons.  相似文献   

2.
We present herein a bovine chromosome 24 (BTA24) radiation hybrid (RH) map using 40 markers scored on a panel of 90 RHs. Of these markers, 29 loci were ordered with odds of at least 1000:1 in a framework map. An average retention frequency of 17.4% was observed, with relatively higher frequencies near the centromere. The length of the comprehensive map was 640 centiray5000 (cR5000) with an average marker interval of approximately 17.3 cR5000. The observed locus order is generally consistent with currently published bovine linkage and physical maps. Nineteen markers were either Type I loci or closely associated with expressed sequences and thus could be used to compare the BTA24 RH map with human mapping information. All genes located on BTA24 were located on human chromosome 18, and previously reported regions of conserved synteny were extended. The comparative data revealed the presence of at least six conserved regions between these chromosomes.  相似文献   

3.
A bovine whole-genome radiation hybrid panel and outline map   总被引:10,自引:0,他引:10  
A 3000-rad radiation hybrid panel was constructed for cattle and used to build outline RH maps for all 29 autosomes and the X and Y chromosomes. These outline maps contain about 1200 markers, most of which are anonymous microsatellite loci. Comparisons between the RH chromosome maps, other published RH maps, and linkage maps allow regions of chromosomes that are poorly mapped or that have sparse marker coverage to be identified. In some cases, mapping ambiguities can be resolved. The RH maps presented here are the starting point for mapping additional loci, in particular genes and ESTs that will allow detailed comparative maps between cattle and other species to be constructed. Radiation hybrid cell panels allow high-density genetic maps to be constructed, with the advantage over linkage mapping that markers do not need to be polymorphic. A large quantity of DNA has been prepared from the cells forming the RH panel reported here and is publicly available for mapping large numbers of loci.  相似文献   

4.
The presence of a monosomic gametocidal chromosome (GC) in a barley chromosome addition line of common wheat generates structural aberrations in the barley chromosome as well as in the wheat chromosomes of gametes lacking the GC. A collection of structurally aberrant barley chromosomes is analogous to a panel of radiation hybrid (RH) mapping and is valuable for high-throughput physical mapping. We developed 90 common wheat lines (GC lines) containing aberrant barley 7H chromosomes induced by a gametocidal chromosome, 2C. DNAs isolated from these GC lines provided a panel of 7H chromosomal fragments in a wheat genetic background, comparable with RH mapping panels in mammals. We used this 7H GC panel and the methodology for RH mapping to physically map PCR-based barley markers, SSRs and AFLPs, onto chromosome 7H, relying on polymorphism between the 7H chromosome and the wheat genome. We call this method GC mapping. This study describes a novel adaptation and combination of methods of inducing chromosomal rearrangements to produce physical maps of markers. The advantages of the presented method are similar to RH mapping in that non-polymorphic markers can be used and the mapping panels can be relatively easily obtained. In addition, mapping results are cumulative when using the same mapping set with new markers. The GC lines will be available from the National Bioresources Project-KOMUGI (). Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Whole-genome radiation hybrid (RH) panels have been constructed for several species, including cattle. RH panels have proven to be an extremely powerful tool to construct high-density maps, which is an essential step in the identification of genes controlling important traits, and they can be used to establish high-resolution comparative maps. Although bovine RH panels can be used with ovine markers to construct sheep RH maps based on bovine genome organization, only some (c. 50%) of the markers available in sheep can be successfully mapped in the bovine genome. So, with the development of genomics and genome sequencing projects, there is a need for a high-resolution RH panel in sheep to map ovine markers. Consequently, we have constructed a 12 000-rad ovine whole-genome RH panel. Two hundred and eight hybrid clones were produced, of which 90 were selected based on their retention frequency. The final panel had an average marker retention frequency of 31.8%. The resolution of this 12 000-rad panel (SheepRH) was estimated by constructing an RH framework map for a 23-Mb region of sheep chromosome 18 (OAR18) that contains a QTL for scrapie susceptibility.  相似文献   

6.
Radiation hybrid (RH) mapping provides a powerful tool to build high-resolution maps of genomes. Here, we demonstrate the use of the AFLP® technique for high-throughput typing of RH cell lines. Cattle were used as the model species because an RH panel was available to investigate the behaviour of AFLP markers within the microsatellite- and STS-based maps of this species. A total of 747 AFLP markers were typed on the TM112 RH radiation panel and 651 of these were assigned by two-point analysis to the 29 bovine autosomes and sex chromosomes. AFLP markers were added to the 1222 microsatellite and STS markers that were included in earlier RH maps. Multipoint maps were constructed for seven example chromosomes, which retained 248 microsatellite and STS markers, and added 123 AFLP markers at LOD 4. The addition of the AFLP markers increased the number of markers by 42.1% and the map length by 10.4%. The AFLP markers showed lower retention frequency (RF) values than the STS markers. The comparison of RF values in AFLP markers and their corresponding AFLP-derived STSs demonstrated that the lower RF values were due to the lower detection sensitivity of the AFLP technique. Despite these differences, AFLP and AFLP-derived STS markers mapped to identical or similar positions. These results demonstrate that it is possible to merge AFLP and microsatellite markers in the same map. The application of AFLP technology could permit the rapid construction of RH maps in species for which extensive genome information and large numbers of SNP and microsatellite markers are not available.  相似文献   

7.
As a first step towards the development of radiation hybrid maps, we have produced a radiation hybrid panel in the chicken by fusing female embryonic diploid fibroblasts irradiated at 6 000 rads with HPRT-deficient hamster Wg3hCl2 cells. Due to the low retention frequency of the chicken fragments, a high number of clones was produced from which the best ones were selected. Thus, 452 fusion clones were tested for retention frequencies with a panel of 46 markers. Based on these results, 103 clones with a mean marker retention of 23.8% were selected for large scale culture to produce DNA in sufficient quantities for the genotyping of numerous markers. Retention frequency was tested again with the same 46 markers and the 90 best clones, with a final mean retention frequency of 21.9%, were selected for the final panel. This panel will be a valuable resource for fine mapping of markers and genes in the chicken, and will also help in building BAC contigs.  相似文献   

8.
The buffalo (Bubalus bubalis) is a source of milk and meat, and also serves as a draft animal. In this study, a 5000-rad whole-genome radiation hybrid (RH) panel for river buffalo was constructed and used to build preliminary RH maps for BBU3 and BBU10 chromosomes. The preliminary maps contain 66 markers, including coding genes, cattle expressed sequence tags (ESTs) and microsatellite loci. The RH maps presented here are the starting point for mapping additional loci that will allow detailed comparative maps between buffalo, cattle and other species whose genomes may be mapped in the future. A large quantity of DNA has been prepared from the cell lines forming the river buffalo RH panel and will be made publicly available to the international community both for the study of chromosome evolution and for the improvement of traits important to the role of buffalo in animal agriculture.  相似文献   

9.
Statistical methods for multipoint radiation hybrid mapping.   总被引:22,自引:5,他引:17       下载免费PDF全文
On the basis of the earlier work of Goss and Harris, Cox et al. introduced radiation hybrid (RH) mapping, a somatic cell genetic technique for constructing fine-structure maps of human chromosomes. Radiation hybrid mapping uses X-ray breakage of chromosomes to order a set of genetic loci and to estimate distances between them. To analyze RH mapping data Cox et al. derived statistical methods that employ information on sets of two and four loci, to build an overall locus order. Here we describe alternative nonparametric and maximum-likelihood methods for the analysis of RHs that use information on many loci simultaneously, including information on partially typed hybrids. Combination of these multipoint methods provides a statistically more efficient solution to the locus-ordering problem. We illustrate our approach by applying it to RH mapping data on 14 markers in 99 radiation hybrids for the proximal long arm of human chromosome 21.  相似文献   

10.
We have constructed a 12,000-rad porcine whole-genome radiation hybrid panel to complement the first generation 7,000-rad panel (IMpRH) and allow higher resolution mapping studies both in specific areas of interest and on the whole genome. We analyzed 243 hybrid clones on the basis of their marker retention frequency to produce a final panel of 90 hybrid clones with an average retention frequency of 35.4%. The resolution of this 12,000-rad panel (IMNpRH2) was compared to the resolution of the 7,000-rad panel (IMpRH) by constructing framework maps in the 2.4-Mb region of porcine chromosome 15 containing the acid meat RN gene. In this region, two-point analysis was used to estimate RH distances and demonstrates their reliability with the estimation of physical distances. This study demonstrates that the 12,000-rad panel constitutes a powerful tool for constructing high-resolution maps. Indeed, the resolution of IMNpRH2 (12-14 kb/cR(12,000)) is two to three times more than that of IMpRH (35-37 kb/cR(7,000)). As expected, the increase in the radiation dose allows an increase of the mapping resolution in terms of kb/cR with the same suppleness of use for mapping experiments. In addition the RH map constructed in the region investigated proved to be more homogeneous on IMNpRH2 than on IMpRH.  相似文献   

11.
K. S. Gill  B. S. Gill  T. R. Endo    T. Taylor 《Genetics》1996,144(4):1883-1891
We studied the distribution of genes and recombination in wheat (Triticum aestivum) group 1 chromosomes by comparing high-density physical and genetic maps. Physical maps of chromosomes 1A, 1B, and 1D were generated by mapping 50 DNA markers on 56 single-break deletion lines. A consensus physical map was compared with the 1D genetic map of Triticum tauschii (68 markers) and a Triticeae group 1 consensus map (288 markers) to generate a cytogenetic ladder map (CLM). Most group 1 markers (86%) were present in five clusters that encompassed only 10% of the group 1 chromosome. This distribution may reflect that of genes because more than half of the probes were cDNA clones and 30% were PstI genomic. All 14 agronomically important genes in group 1 chromosomes were present in these clusters. Most recombination occurred in gene-cluster regions. Markers fell at an average distance of 244 kb in these regions. The CLM involving the Triticeae consensus genetic map revealed that the above distribution of genes and recombination is the same in other Triticeae species. Because of a significant number of common markers, our CLM can be used for comparative mapping and to estimate physical distances among markers in many Poaceae species including rice and maize.  相似文献   

12.
Radiation hybrid (RH) mapping, a somatic cell genetic technique, has been developed in animal systems as a general approach for the construction of long-range physical maps of chromosomes. This statistical method relies on X-ray induced breakage of chromosomes to determine the physical distance between markers, as well as their order on the chromosome. The method can be applied to single chromosomes or across the whole genome. The generation of plant (barley) radiation hybrids and their culture in vitro is described here. PCR-based marker systems are used to verify hybrid status and to demonstrate genome coverage. RH panels of the type generated can be used for physical mapping, map-based cloning, or sequence contig assembly. RH resources will greatly aid the physical characterisation of crop plants with large genomes.  相似文献   

13.
The T55 rat radiation hybrid (RH) mapping panel has been reported to retain the entire rat genome at retention frequencies between 22% and 37%. However, we found that a small segment of rat chromosome 10 harboring at least four different genes, including Tp53, was completely absent from the panel (retention frequency = 0%). Two other markers located in the vicinity exhibited much reduced retention (2-6%). RH clones are generated by transferring highly fragmented DNA into a recipient cell. There might be a strong selection against the transfer and retention of chromosome segments harboring an intact Tp53, as the action of this gene might prevent proliferation and establishment of the RH clone. Our finding further suggests that unexpected low retention or absence of chromosome segments in an RH panel may represent indications that the segments harbor genes with important functions in cell proliferation control.  相似文献   

14.
The mapping resolution of the physical map for chicken Chromosome 4 (GGA4) was improved by a combination of radiation hybrid (RH) mapping and bacterial artificial chromosome (BAC) mapping. The ChickRH6 hybrid panel was used to construct an RH map of GGA4. Eleven microsatellites known to be located on GGA4 were included as anchors to the genetic linkage map for this chromosome. Based on the known conserved synteny between GGA4 and human Chromosomes 4 and X, sequences were identified for the orthologous chicken genes from these human chromosomes by BLAST analysis. These sequences were subsequently used for the development of STS markers to be typed on the RH panel. Using a logarithm of the odds (LOD) threshold of 5.0, nine linkage groups could be constructed which were aligned with the genetic linkage map of this chromosome. The resulting RH map consisted of the 11 microsatellite markers and 50 genes. To further increase the number of genes on the map and to provide additional anchor points for the physical BAC map of this chromosome, BAC clones were identified for 22 microsatellites and 99 genes. The combined RH and BAC mapping approach resulted in the mapping of 61 genes on GGA4 increasing the resolution of the chicken–human comparative map for this chromosome. This enhanced comparative mapping resolution enabled the identification of multiple rearrangements between GGA4 and human Chromosomes 4q and Xp.  相似文献   

15.
Reverse or bidirectional Zoo-FISH suggests that synteny between porcine chromosome 12 (SSC12) and human chromosome 17 (HSA17) is completely conserved. The construction of a high-resolution radiation hybrid (RH) map for SSC12 provides a unique opportunity to determine whether chromosomal synteny is reflected at the molecular level by comparative gene mapping of SSC12 and HSA17. We report an initial, high-resolution RH map of SSC12 on the 12,000-rad IMNpRH2 panel using CarthaGene software. This map contains a total of 320 markers, including 20 microsatellites and 300 ESTs/genes, covering approximately 4836.9 cR12,000. The markers were ordered in 16 linkage groups at LOD 6.0 using framework markers previously mapped on the IMpRH7000-rad SSC12 and porcine genetic maps. Ten linkage groups ordered more than 10 markers, with the largest containing 101 STSs. The resolution of the current RH map is approximately 15.3 kb/cR on SSC12, a significant improvement over the second-generation EST SSC12 RH7000-rad map of 103 ESTs and 15 framework markers covering approximately 2287.2 cR7000. Compared to HSA17, six distinct segments were identified, revealing macro-rearrangements within the apparently complete synteny between SSC12 and HSA17. Further analysis of the order of 245 genes (ESTs) on HSA17 and SSC12 also revealed several micro-rearrangements within a synteny segment. A high-resolution SSC12 RH12,000-rad map will be useful in fine-mapping QTL and as a scaffold for sequencing this chromosome.  相似文献   

16.
Physical mapping and genome sequencing are underway for the ≈17 Gb wheat genome. Physical mapping methods independent of meiotic recombination, such as radiation hybrid (RH) mapping, will aid precise anchoring of BAC contigs in the large regions of suppressed recombination in Triticeae genomes. Reports of endosperm development following pollination with irradiated pollen at dosages that cause embryo abortion prompted us to investigate endosperm as a potential source of RH mapping germplasm. Here, we report a novel approach to construct RH based physical maps of all seven D-genome chromosomes of the hexaploid wheat ‘Chinese Spring’, simultaneously. An 81-member subset of endosperm samples derived from 20-Gy irradiated pollen was genotyped for deletions, and 737 markers were mapped on seven D-genome chromosomes. Analysis of well-defined regions of six chromosomes suggested a map resolution of ∼830 kb could be achieved; this estimate was validated with assays of markers from a sequenced contig. We estimate that the panel contains ∼6,000 deletion bins for D-genome chromosomes and will require ∼18,000 markers for high resolution mapping. Map-based deletion estimates revealed a majority of 1–20 Mb interstitial deletions suggesting mutagenic repair of double-strand breaks in pollen provides a useful resource for RH mapping and map based cloning studies.  相似文献   

17.
Radiation hybrid (RH) mapping of the mouse genome provides a useful tool in the integration of existing genetic and physical maps, as well as in the ongoing effort to generate a dense map of expressed sequence tags. To facilitate functional analysis of mouse Chromosome 5, we have constructed a high-resolution RH map spanning 75 cM of the chromosome. During the course of these studies, we have developed RHBase, an RH data management program that provides data storage and an interface to several RH mapping programs and databases. We have typed 95 markers on the T31 RH panel and generated an integrated map, pooling data from several sources. The integrated RH map ranges from the most proximal marker, D5Mit331 (Chromosome Committee offset, 3 cM), to D5Mit326, 74.5 cM distal on our genetic map (Chromosome Committee offset, 80 cM), and consists of 138 markers, including 89 simple sequence length polymorphic markers, 11 sequence-tagged sites generated from BAC end sequence, and 38 gene loci, and represents average coverage of approximately one locus per 0.5 cM with some regions more densely mapped. In addition to the RH mapping of markers and genes previously localized on mouse Chromosome 5, this RH map places the alpha-4 GABA(A) receptor subunit gene (Gabra4) in the central portion of the chromosome, in the vicinity of the cluster of three other GABA(A) receptor subunit genes (Gabrg1-Gabra2-Gabrb1). Our mapping effort has also defined a new cluster of four genes in the semaphorin gene family (Sema3a, Sema3c, Sema3d, and Sema3e) and the Wolfram syndrome gene (Wfs1) in this region of the chromosome.  相似文献   

18.
A 10,000-rad radiation hybrid (RH) cell panel of the rhesus macaque was generated to construct a comprehensive RH map of chromosome 5. The map represents 218 markers typed in 185 RH clones. The 4846-cR map has an average marker spacing of 798 kb. Alignments of the RH map to macaque and human genome sequences confirm a large inversion and reveal a previously unreported telomeric inversion. The macaque genome sequence indicates small translocations from the ancestral homolog of macaque chromosome 5 to macaque chromosomes 1 and 6. The RH map suggests that these are probably assembly artifacts. Unlike the genome sequence, the RH mapping data indicate the conservation of synteny between macaque chromosome 5 and human chromosome 4. This study shows that the 10,000-rad panel is appropriate for the generation of a high-resolution whole-genome RH map suitable for the verification of the rhesus genome assembly.  相似文献   

19.
We are constructing high-resolution, chromosomal 'test' maps for the entire pig genome using a 12,000-rad WG-RH panel (IMNpRH2(12,000-rad))to provide a scaffold for the rapid assembly of the porcine genome sequence. Here we present an initial, comparative map of human chromosome (HSA) 11 with pig chromosomes (SSC) 2p and 9p. Two sets of RH mapping vectors were used to construct the RH framework (FW) maps for SSC2p and SSC9p. One set of 590 markers, including 131 microsatellites (MSs), 364 genes/ESTs, and 95 BAC end sequences (BESs) was typed on the IMNpRH2(12,000-rad) panel. A second set of 271 markers (28 MSs, 138 genes/ESTs, and 105 BESs) was typed on the IMpRH(7,000-rad) panel. The two data sets were merged into a single data-set of 655 markers of which 206 markers were typed on both panels. Two large linkage groups of 72 and 194 markers were assigned to SSC2p, and two linkage groups of 84 and 168 markers to SSC9p at a two-point LOD score of 10. A total of 126 and 114 FW markers were ordered with a likelihood ratio of 1000:1 to the SSC2p and SSC9p RH(12,000-rad) FW maps, respectively, with an accumulated map distance of 4046.5 cR(12,000 )and 1355.2 cR(7,000 )for SSC2p, and 4244.1 cR(12,000) and 1802.5 cR(7,000) for SSC9p. The kb/cR ratio in the IMNpRH2(12,000-rad) FW maps was 15.8 for SSC2p, and 15.4 for SSC9p, while the ratio in the IMpRH(7,000-rad) FW maps was 47.1 and 36.3, respectively, or an approximately 3.0-fold increase in map resolution in the IMNpRH(12,000-rad) panel over the IMpRH(7,000-rad) panel. The integrated IMNpRH(12,000-rad) andIMpRH(7,000-rad) maps as well as the genetic and BAC FPC maps provide an inclusive comparative map between SSC2p, SSC9p and HSA11 to close potential gaps between contigs prior to sequencing, and to identify regions where potential problems may arise in sequence assembly.  相似文献   

20.
We present a radiation hybrid (RH) map of human Chromosome (Chr) X, using 50 markers on 72 radiation hybrids. The markers, obtained from the consensus map, form a grid spanning the entire chromosome. To check the RH map, the marker order was determined by analysis of presence or absence of retained human DNA fragments in the RHs; the comparison with the consensus showed a similar order. Any STSs, microsatellites, genes, and clones can be positioned and ordered relative to the marker grid. This approach integrates genetic, physical, and large-scale clone mapping and is used to link YAC contigs containing data from various experimental sources. Received: 14 February 1996 / Accepted: 20 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号