首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Bilayer lipid membranes were generated in an aqueous medium from synthetic, egg or plant phosphatidyl choline (PC) or from plant monogalactosyl diglyceride (MG). The water permeability of the black membranes was determined by measuring the net volume flux produced by a NaCl gradient. The osmotic permeability coefficient,P os, was markedly affected by the number of double bonds in the fatty acid conjugates of the lipids: the greater the degree of unsaturation, the higher the value ofP os. The temperature dependence ofP os of the lipid membranes was studied over a range of 29 to 40°C. The experimental activation energy,E a , estimated from the linear plots of log (P os)versus 1/T, was significantly higher for MG membranes (17 kcal/mole) than for the various PC membranes (11 to 13 kcal/mole), probably owing to hydrogen bonding between MG and water molecules. In comparison with PC membranes, the membranes generated from PC and cholesterol (11 molar ratio) had lowerP os but similarE a values. Likewise, either stigmasterol or -sitosterol decreasedP os of MG membranes, whileE a was not affected by the sterols. MG-cholesterol membranes were specifically characterized by a unique value ofE a (–36 kcal/mole) thus indicating temperature dependent structural changes.  相似文献   

2.
Summary Theshape of the energy barrier inside thin, insulating membranes can be an important factor in determining the detailed behavior of transmembrane ionic flows. In particular, a model is developed in which the shape of the barrier is expected to have direct influence on such experimentally important membrane properties as: (a) the shape of the current-voltage relation; (b) the dependence of zero current conductivity on asymmetric concentrations; (c) the dependence of the rectification ratio on the concentration ratio.Current-voltage curves were measured for a wide range of symmetrical and asymmetrical concentrations in black lipid (phosphatidyl ethanolamine) films in the presence of nonactin and potassium. A single barrier shape was found to describe accurately the experimental results in terms of the model.  相似文献   

3.
During terminal differentiation, mammalian epidermal lipids undergo striking changes in both composition and distribution. Phospholipids and neutral lipids are replaced by a mixture of ceramides and neutral lipids organized in intercellular lamellar bilayers. Whether all of these lipids and/or whether specific lipid classes regulate permeability barrier function is not known. When hairless mice were treated with acetone, the degree of barrier perturbation (measured as transepidermal water loss, TEWL) increased linearly with the amount of lipid removed. Moreover, virtually all lipid species appeared to be removed by acetone treatment. In contrast, the nonpolar organic solvent, petroleum ether, while removing greater amounts of lipids, provoked lesser barrier abnormalities. As determined by both quantitative thin-layer chromatography and histochemistry, petroleum ether selectively extracted nonpolar lipids leaving sphingolipids and free sterols in place. In petroleum ether-treated animals, subsequent acetone treatment removed additional sphingolipids and produced a dramatic increase in TEWL. A linear relationship existed for the quantities of sphingolipid removed and degree of barrier disruption in acetone-treated, but not petroleum ether-treated animals. These results support a relationship between the total lipid content of the stratum corneum and barrier function. Secondly, although the results demonstrate the participation of the total lipid mixture in the barrier, removal of nonpolar species alone appears to cause only a modest level of barrier disruption, while removal of sphingolipids and free sterols leads to a more profound level of barrier perturbation.  相似文献   

4.
Two experimental techniques have been utilized to explore the barrier properties of lecithin/decane bilayer membranes with the aim of determining the contributions of various domains within the bilayer to the overall barrier. The thickness of lecithin/decane bilayers was systematically varied by modulating the chemical potential of decane in the annulus surrounding the bilayer using different mole fractions of squalene in decane. The dependence of permeability of a model permeant (acetamide) on the thickness of the solvent-filled region of the bilayer was assessed in these bilayers to determine the contribution of this region to the overall barrier. The flux of acetamide was found to vary linearly with bilayer area with Pm = (2.9 +/- 0.3) x 10(-4) cm s-1, after correcting for diffusion through unstirred water layers. The ratio between the overall membrane permeability coefficient and that calculated for diffusion through the hydrocarbon core in membranes having maximum thickness was 0.24, suggesting that the solvent domain contributes only slightly to the overall barrier properties. Consistent with these results, the permeability of acetamide was found to be independent of bilayer thickness. The relative contributions of the bilayer interface and ordered hydrocarbon regions to the transport barrier may be evaluated qualitatively by exploring the effective chemical nature of the barrier microenvironment. This may be probed by comparing functional group contributions to transport with those obtained for partitioning between water and various model bulk solvents ranging in polarity or hydrogen-bonding potential. A novel approach is described for obtaining group contributions to transport using ionizable permeants and pH adjustment. Using this approach, bilayer permeability coefficients of p-toluic acid and p-hydroxymethyl benzoic acid were determined to be 1.1 +/- 0.2 cm s-1 and (1.6 +/- 0.4) x 10(-3) cm s-1, respectively. From these values, the -OH group contribution to bilayer transport [delta(delta G0-OH)] was found to be 3.9 kcal/mol. This result suggests that the barrier region of the bilayer does not resemble the hydrogen-bonding environment found in octanol, but is somewhat less selective (more polar) than a hydrocarbon solvent.  相似文献   

5.
6.
Lipid phosphate phosphatases (LPPs) are integral membrane enzymes that regulate the levels of bioactive lipids such as sphingosine 1-phosphate and lysophosphatidic acid. The Drosophila LPPs Wunen (Wun) and Wunen-2 (Wun2) have a well-established role in regulating the survival and migration of germ cells. We now show that wun has an essential tissue-autonomous role in development of the trachea: the catalytic activity of Wun is required to maintain septate junction (SJ) paracellular barrier function, loss of which causes failure to accumulate crucial luminal components, suggesting a role for phospholipids in SJ function. We find that the integrity of the blood-brain barrier is also lost in wun mutants, indicating that loss of SJ function is not restricted to the tracheal system. Furthermore, by comparing the rescue ability of different LPP homologs we show that wun function in the trachea is distinct from its role in germ cell migration.  相似文献   

7.
8.
9.
10.
11.
S V Rudenko 《Biofizika》1986,31(1):59-63
It has been shown that structural rearrangements induced by glycerol in bilayer lipid membranes (BLM) containing cholesterol facilitate the transmembrane transport of amphotericin B molecules in the direction of glycerol gradient. The addition of amphotericin B to the same side with glycerol results in a change in bilayer selectivity from the cation to the anion one. Besides, the final conductivity is blocked by tetraethylammonium from the solution with no amphotericin B added. It testifies to the transport of amphotericin molecules to the opposite side of the membrane. The transport effect depends on the cholesterol content in bilayer, ionic strength of the medium and slightly depends on temperature. It is concluded that transport of amphotericin B in such conditions differs from the diffusive one and is due to the formation of intermediate lipid phases in the course of structural rearrangements of bilayers.  相似文献   

12.
13.
The relative abilities of three test substances ( [14C] antipyrine, [14C] barbital and [3H] mannitol) having similar molecular weights (range of 182-188) but with differing lipid solubilities (partition coefficients between chloroform and phosphate-buffered saline, pH 7.4 of 17.2, 0.23 and approximately equal to 0.002, respectively) to enter the uterine lumen from blood were examined in immature ovariectomized and nephrectomized rats treated for 3 days with progesterone alone or combined with estradiol. With [14C] antipyrine and [14C] barbital steady-state conditions for radioactivity concentrations in uterine fluid were nearly achieved by 80 min after injection. At this time, the ratios of uterine fluid to serum radioactivity concentrations for these relatively lipophilic substances were marginally less than 1.0, indicating that equilibration between serum and uterine fluid radioactivity had nearly occurred. In contrast, these ratios at 80 min ranged between 0.30 and 0.31 for the least lipophilic substance tested, [3H] mannitol. The ratios of uterine fluid to serum radioactivity concentrations at 5 min after injection in animals receiving the same hormone treatment indicated that steady-state conditions were approached at differing rates depending upon the test substance. The test substances ranked according to these ratios were [14C] antipyrine greater than [14C] barbital greater than [3H] mannitol; this ranking of compounds corresponds exactly with that of their lipid solubilities. For [14C] antipyrine and [14C] barbital, as indicated by the ratios of uterine fluid to serum radioactivity concentrations at 5 min after injection, steady-state conditions were approached more rapidly in estradiol plus progesterone-treated animals than in those receiving progesterone only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Oxygen permeability of the lipid bilayer membrane made of calf lens lipids   总被引:1,自引:0,他引:1  
The oxygen permeability coefficient across the membrane made of the total lipid extract from the plasma membrane of calf lens was estimated from the profile of the oxygen transport parameter (local oxygen diffusion-concentration product) and compared with those estimated for membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Profiles of the oxygen transport parameter were obtained by observing the collision of molecular oxygen with nitroxide radical spin labels placed at different depths in the membrane using the saturation-recovery EPR technique and were published by us earlier (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta. 1768 (2007) 1454-1465). At 35 degrees C, the estimated oxygen permeability coefficients were 51.3, 49.7, and 157.4 cm/s for lens lipid, POPC/Chol, and POPC membranes, respectively (compared with 53.3 cm/s for a water layer with the same thickness as a membrane). Membrane permeability significantly decreases at lower temperatures. In the lens lipid membrane, resistance to the oxygen transport is located in and near the polar headgroup region of the membrane to the depth of the ninth carbon, which is approximately where the steroid-ring structure of cholesterol reaches into the membrane. In the central region of the membrane, oxygen transport is enhanced, significantly exceeding that in bulk water. It is concluded that the high level of cholesterol in lens lipids is responsible for these unique membrane properties.  相似文献   

15.
The oxygen permeability coefficient across the membrane made of the total lipid extract from the plasma membrane of calf lens was estimated from the profile of the oxygen transport parameter (local oxygen diffusion-concentration product) and compared with those estimated for membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Profiles of the oxygen transport parameter were obtained by observing the collision of molecular oxygen with nitroxide radical spin labels placed at different depths in the membrane using the saturation-recovery EPR technique and were published by us earlier (J. Widomska, M. Raguz, J. Dillon, E. R. Gaillard, W. K. Subczynski, Biochim. Biophys. Acta. 1768 (2007) 1454-1465). At 35 °C, the estimated oxygen permeability coefficients were 51.3, 49.7, and 157.4 cm/s for lens lipid, POPC/Chol, and POPC membranes, respectively (compared with 53.3 cm/s for a water layer with the same thickness as a membrane). Membrane permeability significantly decreases at lower temperatures. In the lens lipid membrane, resistance to the oxygen transport is located in and near the polar headgroup region of the membrane to the depth of the ninth carbon, which is approximately where the steroid-ring structure of cholesterol reaches into the membrane. In the central region of the membrane, oxygen transport is enhanced, significantly exceeding that in bulk water. It is concluded that the high level of cholesterol in lens lipids is responsible for these unique membrane properties.  相似文献   

16.
Equilibrium dialysis experiments are used to measure excluded volumes for the non-electrolyte permeant [U-14C] erythritol in lipid bilayer systems. The data indicate amounts of water associated with the lipid membranes which correspond with amounts calculated from calorimetric measurements.The membrane systems can be described as composite elements consisting of the lipid bilayers and adjacent water layers on both sides. The finding that the permeant is excluded indicates that the water layers contribute to the permeability barrier.The mean thickness of the water layers is about 6 Å for planar bilayers in multilayered liposomes and 10 Å for curved bilayers in sonicated vesicles. Next to the difference in thickness of the water layers differences in interfacial adsorption between the two systems are apparent.  相似文献   

17.
The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.  相似文献   

18.
The effect of cyclic decapeptide of gramicidin S on electrical conductivity of bilayer lipid membranes has been studied. The integral conductivity of bilayer has been shown to increase with the growth of antibiotic concentration. The integral conductivity increase occurs as series of conductivity discrete leaps, differing in amplitude from fluctuations of conductivity caused by linear gramicidins. In the series of selectivity of bilayer membranes for cations of alkaline metals the rubidium ion is before the cesium ion. This is the only difference between this series and the series of relative ionic mobility series of cations of alkaline metals in water solutions.  相似文献   

19.
Amphiphysin is a major dynamin-binding partner at the synapse; however, its function in fission is unclear. Incubation of large unilamellar liposomes with mice brain cytosol led to massive formation of small vesicles, whereas cytosol of amphiphysin 1 knockout mice was much less efficient in this reaction. Vesicle formation from large liposomes by purified dynamin was also strongly enhanced by amphiphysin. In the presence of liposomes, amphiphysin strongly affected dynamin GTPase activity and the recruitment of dynamin to the liposomes, but this activity was highly dependent on liposome size. Deletion from amphiphysin of its central proline-rich stretch dramatically potentiated its effect on dynamin, possibly by relieving an inhibitory intramolecular interaction. These results suggest a model in which maturation of endocytic pits correlates with the oligomerization of dynamin with either amphiphysin or other proteins with similar domain structure. Formation of these complexes is coupled to the activation of dynamin GTPase activity, thus explaining how deep invagination of the pit leads to fission.  相似文献   

20.
Using the stopped-flow kinetic method we have measured the deuteration rate of the amino protons in 2'deoxyguanosine 5'monophosphate and 7-methylguanosine 5'monophosphate. For both compounds the exchange rates are accelerated with increasing concentration of a large number of buffers with widely differing pKs. The results obtained, in conjunction with a theoretical model study, give rise to serious doubts concerning the normally accepted mechanism of amino proton exchange involving a pre-protonation at N7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号