首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substance capable of stimulating pyruvate dehydrogenase (PDH) and suppressing glucose-6-phosphatase (G-6-Pase) in a cell-free system was prepared from insulin-treated human placental plasma membranes and peripheral blood mononuclear cells by formic acid extraction. This material was partially purified by molecular-exclusion chromatography, ion-exchange chromatography, and hydroxylapatite chromatography. This was found to stimulate pyruvate dehydrogenase and inhibit glucose-6-phosphatase in a dose-dependent manner. The amount or ability of this substance to stimulate pyruvate dehydrogenase was increased in the proportion to the concentration of insulin. The stimulation of pyruvate dehydrogenase by the factor was eliminated when sodium fluoride was presented in the assay of the activation. This result implied that the activation of pyruvate dehydrogenase was mediated by the stimulation of the phosphatase of pyruvate dehydrogenase complex. Each material isolated from insulin-treated human placental plasma membranes and mononuclear cells shared a number of important characteristics of putative second messengers of insulin action as follows: (i) heat and acid stability; (ii) a similar molecular weight; (iii) increased activity of pyruvate dehydrogenase in a insulin-dependent manner; and (iv) stimulated pyruvate dehydrogenase by the sodium fluoride-sensitive mechanism. This human putative second messenger of insulin action was eluted from the anion-exchange resin AG1-X8 at an ionic strength of 3–4 m, as well as from the hydroxylapatite column at a phosphate concentration of 2–3 m.  相似文献   

2.
Simultaneous measurements were made of lipogenesis and pyruvate dehydrogenase activity in segments of rat epididymal adipose tissue incubated with saturating amounts of [U-14C]glucose and insulin. Glucose was converted to fatty acids at a rate only 64–79% of that permitted by the tissue's content of the active form of pyruvate dehydrogenase (PDHa). Addition of either of the electron acceptors, phenazine methosulfate (10 μm) or N,N,N′,N′-tetramethyl-p-phenylenediamine (50 μm), increased lipogenesis until it equalled the PDHa activity of the tissue. Pyruvate release was increased 2-fold or more by the electron acceptors, suggesting that the increase in lipogenesis might have resulted from an increase in the intracellular pyruvate levels such that PDHa became saturated with substrate. Higher levels of the electron acceptors decreased PDHa activity, and reduced lipogenesis correspondingly. The data suggest that the maximal rate of lipogenesis in the presence of glucose and insulin is limited by the inability of the tissue to elevate pyruvate levels sufficiently to saturate PDHa. Although glycerol release was increased by either electron acceptor and insulin partially overcame this effect, the effects of the electron acceptors on PDHa activity could not be attributed to an increase in lipolysis.  相似文献   

3.
Cyclic nucleotide phosphodiesterasc activities were determined in fractions of fat cell homogenates, prepared either by differential centrifugation or by centrifugation on discontinuous sucrose gradients.In the supernatant fraction (150,000g supernatant in 0.25 m sucrose, or 92,000g supernatant in 0.32m sucrose): (a) there was 70% of the cyclic AMP phosphodiesterase activity of the whole homogenate, and over 90% of the cyclic GMP phosphodiesterase activity; (b) double reciprocal kinetic plots were nonlinear for both substrates; (c) cyclic (GMP, 0.02-2 μm, activated hydrolysis of 10 μm cyclic AMP; (d) 25 or 50 μm cyclic GMP noncompetitively inhibited hydrolysis of 5–20 μm cyclic AMP (Ki = 38 μm); (e) cyclic AMP, 0.1 μm, slightly activated hydrolysis of 10 μm cyclic GMP; (f) 10 or 20 μm cyclic AMP competitively inhibited hydrolysis of 5–20 μm cyclic GMP (Ki = 18 μm).In the particle fraction (1000g, 1000-16,000g, and 16,000–150,000g pellets in 0.25m sucrose, or 0.8-1.2m sucrose interface at 92,000g): (a) there was 30% of the cyclic AMP phosphodiesterase activity of whole homogenate, but less than 5% of the cyclic GMP phosphodiesterase; (b) the double reciprocal kinetic plot of hydrolysis of cyclic AMP was nonlinear; (c) cyclic GMP, 0.02-2μm, did not affect hydrolysis of 10 μm cyclic AMP; (d) 5 or 10 μm cyclic GMP competitively inhibited hydrolysis of 5–20 μm cyclic AMP (Ki = 1.9 μm).Incubation of fat cells with insulin, 40 ng/ml, increased the maximum velocity of particulate high-affinity cyclic AMP phosphodiesterase, but did not affect the supernatant activity. Addition of insulin after homogenization of the cells had no effect on any phosphodiestesterase activity.  相似文献   

4.
The possible interaction of l-3,3′,-5-triiodthyronine (T3) and cycli AMP on hepatic gluconeogenesis was investigated in perfused livers isolated from hypothyroid rats starved for 24 h. T3 (1·10?6) and cyclic AMP (2·10?4 M) increased hepatic gluconeogenesis from alanine within 30–60 min perfusion time (+85%/ + 90%), both were additive in their action (+191%). Concomitantly, α-amino[14C]isobutyric acid as well as net alanine uptake and urea production were elevated by T3 and by cyclic AMP. T3 increased the oligomycin-sensitive O2 consumption and the tissue ‘overall’ ATP/ADP ratio, whereas cyclic AMP showed only a minor effect on cellular energy metabolism. As was observed recently for cyclic AMP, the stimulating action of T3 on hepatic gluconeogenesis was independent of exogenous Ca2+ concentration. T3 by itself affected neither the total nor the protein-bound hepatic cyclic AMP contents, pyruvate kinese (v:0.15 mM) activation nor the tissue levels of gluconeogenic intermediates. In contrast, cyclic AMP itself — although less effective than in euthyroid livers — decreased pyruvate kinase activity in hypothyroid livers with a concomitant increase in hepatic phosphoenolpyruvate concentration. This resulted in a ‘crossover’ between pyruvate and phosphoenolpyruvate. Cyclic AMP action was not affected by the further addition of T3. Glucagon (1·10?8 M) was less effective in hypo-than in euthyroid livers in increasing endogenous cyclic AMP content, deactivating pyruvate kinase and stimualting glucose production; this is normalized by the further addition of 1-methyl-3-isobutylxanthine (50 μM). It is concluded that T3 stimulats hepatic gluconeogenesis by a cyclic-AMP-independent mechanism. In addition, the stimulatory action of cyclic AMP and glucagon with respect to hepatic gluconeogenesis is reduced in hypothyroidism. This may be explained by an increase in hepatic phosphodiesterase activity.  相似文献   

5.
1. In epididymal adipose tissue synthesizing fatty acids from fructose in vitro, addition of insulin led to a moderate increase in fructose uptake, to a considerable increase in the flow of fructose carbon atoms to fatty acid, to a decrease in the steady-state concentration of lactate and pyruvate in the medium, and to net uptake of lactate and pyruvate from the medium. It is concluded that insulin accelerates a step in the span pyruvate-->fatty acid. 2. Mitochondria prepared from fat-cells exposed to insulin put out more citrate than non-insulin-treated controls under conditions where the oxaloacetate moiety of citrate was formed from pyruvate by pyruvate carboxylase and under conditions where it was formed from malate. This suggested that insulin treatment of fat-cells led to persistent activation of pyruvate dehydrogenase. 3. Insulin treatment of epididymal fat-pads in vitro increased the activity of pyruvate dehydrogenase measured in extracts of the tissue even in the absence of added substrate; the activities of pyruvate carboxylase, citrate synthase, glutamate dehydrogenase, acetyl-CoA carboxylase, NADP-malate dehydrogenase and NAD-malate dehydrogenase were not changed by insulin. 4. The effect of insulin on pyruvate dehydrogenase activity was inhibited by adrenaline, adrenocorticotrophic hormone and dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate). The effect of insulin was not reproduced by prostaglandin E(1), which like insulin may lower the tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate) and inhibit lipolysis. 5. Adipose tissue pyruvate dehydrogenase in extracts of mitochondria is almost totally inactivated by incubation with ATP and can then be reactivated by incubation with 10mm-Mg(2+). In this respect its properties are similar to that of pyruvate dehydrogenase from heart and kidney where evidence has been given that inactivation and activation are catalysed by an ATP-dependent kinase and a Mg(2+)-dependent phosphatase. Evidence is given that insulin may act by increasing the proportion of active (dephosphorylated) pyruvate dehydrogenase. 6. Cyclic AMP could not be shown to influence the activity of pyruvate dehydrogenase in mitochondria under various conditions of incubation. 7. These results are discussed in relation to the control of fatty acid synthesis in adipose tissue and the role of cyclic AMP in mediating the effects of insulin on pyruvate dehydrogenase.  相似文献   

6.
Plasma membranes from hamster liver were prepared by differential and continuous sucrose gradient centrifugation. The membranes contained a low Km cyclic AMP phosphodiesterase (EC 3.5. lc) and calmodulin. The activity of the membrane phospho-diesterase was reduced with EGTA and LaCl3. The membrane low Km cyclic AMP phosphodiesterase was solubilized with Triton X-100 and then chromatographed on DEAE-cellulose to remove calmodulin. After elution, phosphodiesterase was stimulated with exogenous calmodulin; this activation was blocked with EGTA. Thus a low Km cyclic AMP phosphodiesterase has been shown to be dependent on calmodulin for “maximal” activity.  相似文献   

7.
The distribution of cyclic-AMP phosphodiesterase was investigated in subcellular fractions prepared from homogenates of rat liver or isolated hepatocytes. When measured at 1 mM or 1 μM substrate concentration, approx. 35% or 50%, respectively, of enzyme activity was particulate. The soluble activity appeared to be predominantly a ‘high Km’ form, whereas the particulate activity had both ‘high Km’ and ‘low Km’ components. The recovery of cyclic-AMP phosphodiesterase was measured using 1 μM substrate concentration, in plasma membrane-containing fractions prepared either by centrifugation or by the use of specific immunoadsorbents. The recovery of phosphodiesterase was lower than that of marker enzymes for plasma membrane, and comparable with the recovery of markers for intracellular membranes. It was concluded that regulation of both ‘high Km’ and ‘low Km’ phosphodiesterase could potentially make a significant contribution to the control of cyclic AMP concentration, even at μM levels, in the liver. The ‘low Km’ enzyme, for which activation by hormones has been previously described, appears to be located predominantly in intracellylar membranes in hepatocytes.The immunological procedure for membrane isolation allowed the rapid preparation of plasma membranes in high yield. Liver cells were incubated with rabbit anti-(rat erythrocyte) serum and homogenized. The antibody-coated membrane fragments were then extracted onto an immunoadsorbent consisiting of sheep anti-(rabbit IgG) immunoglobulin covalently bound to aminocellulose. Plasma membrane was obtained in approx. 40% yield within 50 min of homogenizing cells.  相似文献   

8.
The overall reaction catalyzed by the pyruvate dehydrogenase complex from rat epididymal fat tissue is inhibited by glyoxylate at concentrations greater than 10 μm. The inhibition is competitive with respect to pyruvate; Ki was found to be 80 μm. Qualitatively similar results were observed using pyruvate dehydrogenase from rat liver, kidney, and heart. Glyoxylate also inhibits the pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat, with the inhibition being readily detectable using 50 μm glyoxylate. These effects of glyoxylate are largely reversed by millimolar concentrations of thiols (especially cysteine) because such compounds form relatively stable adducts with glyoxylate. Presumably these inhibitions by low levels of glyoxylate had not been previously observed, because others have used high concentrations of thiols in pyruvate dehydrogenase assays. Since the inhibitory effects are seen with suspected physiological concentrations, it seems likely that glyoxylate partially controls the activity of pyruvate dehydrogenase in vivo.  相似文献   

9.
Insulin, at a concentration of 1 mU/ml, stimulated glycogen synthase and pyruvate dehydrogenase about threefold in isolated rat adipocytes. Upon the removal of insulin, glycogen synthase activity remained in the activated state for 10 min and thereafter rapidly returned to basal level. On the other hand, insulin-stimulated pyruvate dehydrogenase activity remained elevated for at least 30 min. Isoproterenol (10−8m) stimulated phosphorylase and inhibited pyruvate dehydrogenase through the activation of β-adrenergic receptors. Addition of the β-antagonist, propranolol (10−5m), after isoproterenol reversed the action of isoproterenol on phosphorylase but not its action on pyruvate dehydrogenase. Dibutyryl cyclic AMP, when added to intact adipocytes, produced an effect on pyruvate dehydrogenase similar to that induced by isoproterenol. Our results indicate that both insulin and the β-agonist have a unique action on pyruvate dehydrogenase which is different from their effects on other enzymes such as glycogen synthase and phosphorylase.  相似文献   

10.
Summary The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3′∶5′-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and highK m forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2). This work was supported by grants from the Medical Research Council of New Zealand and the Medical Research Distribution Committe.  相似文献   

11.
The reversal of insulin effects on sugar transport and phosphodiesterase in fat cells was studied after arresting further actions of insulin with KCN, NaN3, 2,4-dinitrophenol, or dicumarol. These agents rapidly lower the ATP concentration and concomitantly block the actions of insulin added later. Contrary to our expectation, the above inhibitors failed to initiate deactivation of the hormone-stimulated transport system. Instead, in the presence of the agents the transport system remained activated even after cells had been washed with an insulin-free buffer. This effect of the inhibitors was reversed when cells were washed with an inhibitor-free buffer containing glucose or pyruvate. The above inhibitors also blocked the deactivation of sugar transport stimulated by mechanical agitation. The effects of the inhibitors could not be explained by their possible effects on the basal transport activity, the intracellular urea space, or the cell count. The insulin-stimulated phosphodiesterase activity was rapidly lowered when cells were exposed to the above inhibitors. Apparently, these agents did not denature phosphodiesterase itself since the latter could be reactivated by insulin when inhibitor-treated cells were washed with a glucose-containing buffer. None of the above agents, except dicumarol, significantly inhibited phosphodiesterase activity in a cell-free system. It is suggested that the effects of insulin on sugar transport and phosphodiesterase are reversed by different mechanisms. ATP or metabolic energy may be involved in the deactivation of sugar transport, but not in that of phosphodiesterase.  相似文献   

12.
Lipoamide dehydrogenase (NADH:lipoamide oxidoreductase EC 1.6.4.3) has been isolated from Ascaris suum muscle mitochondria. This activity has been purified to apparent homogeneity from both the pyruvate dehydrogenase complex and from 150,000g mitochondrial supernatants which were devoid of pyruvate dehydrogenase complex activity. The enzymes from both sources exhibited similar kinetic, catalytic, and regulatory properties and appear to be identical as judged by polyacrylamide gel electrophoresis. The native enzyme acts as a dimer, containing 2 mol of FAD, and has a subunit molecular weight of 54,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel chromatography. The enzyme also possesses substantial NADH:NAD+ transhydrogenase activity. Heat denaturation and differential solubilization experiments imply that the transhydrogenase activity previously reported is, in fact, associated with the lipoamide dehydrogenase moiety of the Ascaris pyruvate dehydrogenase complex. Whether or not this activity functions physiologically in hydride ion translocation, as previously suggested, remains to be demonstrated.  相似文献   

13.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

14.
In vitro, the pyruvate dehydrogenase complex is sensitive to product inhibition by NADH and acetyl-coenzyme A (CoA). Based upon Km and Ki relationships, it was suggested that NADH can play a primary role in control of pyruvate dehydrogenase complex activity in vivo (JA Miernyk, DD Randall [1987] Plant Physiol 83:306-310). We have now extended the in vitro studies of product inhibition by assaying pyruvate dehydrogenase complex activity in situ, using purified intact mitochondria from green pea (Pisum sativum) seedlings. In situ activity of the pyruvate dehydrogenase complex is inhibited when mitochondria are incubated with malonate. In some instances, isolated mitochondria show an apparent lack of coupling during pyruvate oxidation. The inhibition by malonate, and the apparent lack of coupling, can both be explained by an accumulation of acetyl-CoA. Inhibition could be alleviated by addition of oxalacetate, high levels of malate, or l-carnitine. The CoA pool in nonrespiring mitochondria was approximately 150 micromolar, but doubled during pyruvate oxidation, when 60 to 95% of the total was in the form of acetyl-CoA. Our results indicate that in situ activity of the mitochondrial pyruvate dehydrogenase complex can be controlled in part by acetyl-CoA product inhibition.  相似文献   

15.
Soluble and stable insulin-dextran complex was prepared. Pyruvate dehydrogenase activity, as assayed by 14CO2 formation from [1-14C]-pyruvate in crude mitochondria of mouse adipose tissue, was increased after incubation of fat pads with native insulin or insulin-dextran. The direct addition of insulin or insulin-dextran to mitochondria was without effect. At submaximal stimulation, insulin-dextran was 10 times less effective than native insulin but the degree of maximal stimulation and the time course of activation by insulin and insulin-dextran were similar. The results favor the concept that the activation of pyruvate dehydrogenase in fat cells does not need the entry of insulin into cells.  相似文献   

16.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

17.
The hormonal control of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity has been studied by using as a model the isoproterenol stimulation of cyclic AMP phosphodiesterase activity in C6 glioma cells. A 2-fold increase in cyclic AMP phosphodiesterase specific activity was observed in homogenates of isoproterenol-treated cells relative to control. This increase reached a maximum 3 h after addition of isoproterenol, was selective for cyclic AMP hydrolysis, was reproduced by incubation with 8-Br cyclic AMP but not with 8-Br cyclic GMP and was limited to the soluble enzyme activity. The presence of 0.1 mM EGTA did not alter the magnitude of the increase in phosphodiesterase activity. Moreover, the calmodulin content in the cell extracts was not changed after isoproterernol. DEASE-Sephacel chromatography of the 100 000×g supernatant resolved two peaks of phosphodiesterase activity. The first peak hydrolyzed both cyclic nucleotides and was activated by Ca2+ and purified calmodulin. The second peak was specific for cyclic AMP but it was Ca2+- and calmodulin-insensitive. Isoproterenol selectively increased the specific activity of the second peak. Kinetic analysis of the cyclic AMP hydrolysis by the induced enzyme reveled a non-linear Hofstee plot with apparent Km values of 2–5 μM. Cyclic GMP was not hydrolyzed by this enzyme in the absence or presence of calmodulin and failed to affect the kinetics of the hydrolysis of cyclic AMP. Gel filtration chromatography of the induced DEASE-Sephacel peak resolved a single peak of enzyme activity with an apparent molecular weight of 54 000.  相似文献   

18.
Crude extracts of maize leaf tissue catalysed the phosphorylation of AMP by 32PPi in the presence of phosphoenolpyruvate (PEP). The reaction was enhanced by F? and NH4+. The optimum concentrations of AMP, PEP and PPi were 0.3, 10 and 1 mM, respectively. Under these conditions, ca75% of the AMP phosphorylated by 32PPi was present as ATP and ca25 % as ADP. The activity was reversibly cold labile. The specific activity of crude extracts in the presence of F? was proportional to enzyme concentration only at protein concentrations < 25,μg/ml. Partially purified pyruvate, phosphate dikinase (PPD) from maize leaf quantitatively phosphorylated AMP to ATP in a (PEP plus PPi)-dependent reaction with the concomitant production of 0.9 mol of pyruvate per mol of AMP phosphorylated. It was concluded that (PEP plus PPi)-dependent phosphorylation of AMP provides a reliable method for estimating PPD activity in crude extracts of maize. Crude maize extracts also catalysed 32Pi-ATP and 32PPi-ATP exchange but these activities were not specific for PPD.  相似文献   

19.
Author index     
Fat cell particulate phosphodiesterase activity can be solubilized in high yield (80–100%) in a buffer system (30 mM Tris · HCl, pH 8.0) containing non-ionic detergents (0.1% Brij 30, 1.0% Triton X-100), salt (3.0 mM MgSO4, 5.0 mM NaBr) and dithiothreitol (5.0 mM). Polycrylamide gel electrophoresis of the solubilized enzyme activity indicated the presence of two bands of activities of different electrophoretic mobilities, both of which hydrolyzed cylic AMP and cyclic GMP. The solubilized activity eluted from DEAE Bio-Gel columns as a somewhat broad profile with at least two peaks of activity. Activity against both cyclic AMP and cyclic GMP eluted in similar but not identical patterns. The solubilized enzyme and DEAE column eluates exhibited low (<1 μM) Michaelis constants for cyclic AMP and cyclic GMP. In addition, the increase in phosphodiesterase activity induced by incubation of intact fat cells with insulin or adrenocorticotropic hormone are maintained in the solubilized state.  相似文献   

20.
Hormone-stimulated lipolysis in adipose tissue was inhibited by fluoroacetate and there was a concomitant decrease in both the basal and hormone-stimulated cyclic AMP levels. Adenylate cyclase (EC 4.6.1.1) activity in membrane preparations was inhibited by fluoroacetate. There was no influence of fluoroacetate on the low Km cyclic AMP phosphodiesterase (EC 3.1.4.17) activity. The rate of glucose conversion to fatty acids was increased when adipose tissue was incubated in the presence of fluoroacetate. The outputs of pyruvate and lactate into the incubation medium were decreased at this time, suggesting decreased tissue pyruvate levels and a site of activation of lipogenesis distal to pyruvate formation. Pyruvate dehydrogenase (EC 1.2.4.1) activity was increased twofold in adipose tissue incubated in the presence of fluoroacetate. This was attributed to a fluoroacetate-induced inhibition of pyruvate dehydrogenase kinase, the enzyme responsible for inactivating the pyruvate dehydrogenase complex. Glucose transport was increased to a small but significant degree by fluoroacetate. In addition, both the tissue content of citrate and its release into the incubation medium were increased, suggesting that fluoroacetate resulted in an inhibition of aconitase (EC 4.2.1.3). The tissue ATP content was unchanged. Because the antilipolytic and lipogenic effects of fluoroacetate parallel those of insulin, they may share a common mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号