首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat waves are expected to increase in frequency and magnitude with climate change. The first part of a study to produce projections of the effect of future climate change on heat-related mortality is presented. Separate city-specific empirical statistical models that quantify significant relationships between summer daily maximum temperature (T max) and daily heat-related deaths are constructed from historical data for six cities: Boston, Budapest, Dallas, Lisbon, London, and Sydney. ‘Threshold temperatures’ above which heat-related deaths begin to occur are identified. The results demonstrate significantly lower thresholds in ‘cooler’ cities exhibiting lower mean summer temperatures than in ‘warmer’ cities exhibiting higher mean summer temperatures. Analysis of individual ‘heat waves’ illustrates that a greater proportion of mortality is due to mortality displacement in cities with less sensitive temperature–mortality relationships than in those with more sensitive relationships, and that mortality displacement is no longer a feature more than 12 days after the end of the heat wave. Validation techniques through residual and correlation analyses of modelled and observed values and comparisons with other studies indicate that the observed temperature–mortality relationships are represented well by each of the models. The models can therefore be used with confidence to examine future heat-related deaths under various climate change scenarios for the respective cities (presented in Part 2).  相似文献   

2.
Temperature is one of the most important abiotic factors affected by climate change. It determines physiological processes, ecological patterns and establishes the limits of geographic distribution of species. The induced thermal stress frequently results in physiological and behavioral responses and, in extreme cases, may lead to mortality episodes. Scrobicularia plana and Cerastoderma edule behavioral and mortality responses to temperature were evaluated. Specimens were sampled in the Mondego estuary (Portugal), acclimated and exposed to different temperature treatments (5–35 °C). Individual activity and mortality were registered during 120 h laboratory assays. Both species showed a thermal optimum for their activity (S. plana: 15–23 °C; C. edule: 20–23 °C), and survival was mainly affected by high temperature (S. plana: LC50120 h = 28.86 °C; C. edule: LC50120 h = 28.01 °C), with 100% mortality above critical values (≥32 °C). Results further indicated that both species are more affected the higher the temperature and the longer the exposure time. This study indicates that the occurrence of extreme climatic events, especially heat waves, may be particularly impairing for these species.  相似文献   

3.
The discussion on the effects of climate change on human activity has primarily focused on how increasing temperature levels can impair human health. However, less attention has been paid to the effect of increased climate variability on health. We investigate how in utero exposure to temperature variability, measured as the fluctuations relative to the historical local temperature mean, affects birth outcomes in the Andean region. Our results suggest that exposure to a temperate one standard deviation relative to the municipality’s long-term temperature mean during pregnancy reduces birth weight by 20 g. and increases the probability a child is born with low birth weight by a 0.7 percentage point. We also explore potential channels driving our results and find some evidence that increased temperature variability can lead to a decrease in health care and increased food insecurity during pregnancy.  相似文献   

4.
Diurnal Temperature Range (DTR) is a meteorological index which represents temperature variation within a day. This study assesses the impact of high and low values of DTR on mortality. Distributed Lag Non-linear Models combined with a quasi-Poisson regression model was used to assess the impact of DTR on cause, age and gender specific mortality, controlled for potential confounders such as long-term trend of daily mortality, day of week effect, holidays, mean temperature, humidity, wind speed and air pollutants. As the effect of DTR may vary between the hot season (from May to October) and cold season (from November to April of the next year), we conducted analyses separately for these two seasons. In high DTR values (all percentiles), the Cumulative Relative Risk (CRR) of Non-Accidental Death, Respiratory Death and Cardiovascular Death increased in the full year and hot season, and especially in lag (0−6) of the hot season. In the cold season and high DTR values (all percentiles), the CRR of Non-Accidental Death and Cardiovascular Death decreased, but the CRR of Respiratory Death increased. Although there was no clear significant effect in low DTR values. High values of DTR increase the risk of mortality, especially in the heat season, in Urmia, Iran.  相似文献   

5.
The impact of climate change on hydrology and water resources is one of the most critical issues facing the world in the next few decades. In particular, there is a need to quantify the risks associated with maintaining the security of resource quantity and quality, and to assess the effectiveness of potential management strategies. In this paper, we assess the impacts of climate variability and change on one aspect of river health. A simple model of Anabaena algal bloom occurrence at a weir pool in the lower Murrumbidgee River, Australia, has been coupled to a catchment model that is used to simulate streamflow, irrigation demand and diversions, dam water storage and releases, and decision-making by both irrigators and managers. Long-term climate data are obtained from a statistical downscaling algorithm, which, when applied to global climate model predictions can provide climate data suitable for driving the coupled model under a variety of climatic scenarios. The coupled model is then used to assess the impact of climate variability and projected climate change on the frequency, duration and magnitude of Anabaena blooms. The impact of two management strategies for bloom control are also assessed and it is shown that even a single, quite simple, resource-neutral, adaptive management strategy has the potential to substantially reduce the occurrence and impact of algal blooms and to more than compensate for the deleterious impacts of climate change. This result supports the notion that planning for the future can lead to positive outcomes in the present.  相似文献   

6.
 Based on records from the Federal Bureau for Statistics of Germany, the seasonality of mortality was investigated for the period 1946–1995. Lowest mortality rates were found during summer (August or September) while highest values were found in winter (January through March). Non-linear regression of all monthly mortality data with the average monthly temperatures in Germany revealed a significant negative relationship (r=–0.739; n=600; P<0.0001). The fact that the differences between the long-range monthly temperatures and the individual monthly temperatures also showed a distinct relationship to the mortality rates speaks against a mere coincidence of both parameters. The amplitude of this seasonal rhythm declined steadily within the observation period. It is concluded that low temperatures cause an increase in mortality rates and that this effect has become less important during recent decades due to the increased use of central heating and because of improvements in the public health system. Received: 27 April 1998 / Revised: 10 July 1998 / Accepted: 9 September 1998  相似文献   

7.
Global environmental change, in particular climate change, will have adverse effects on public health. The increased frequency/intensity of heat waves is expected to increase heat-related mortality and illness. To quantify the climatic risks of heat-related mortality in Lisbon an empirical-statistical model was developed in Part I, based on the climate-mortality relationship of the summer months of 1980-1998. In Part II, scenarios of climate and population change are applied to the model to assess the potential impacts on public health in the 2020s and 2050s, in terms of crude heat-related mortality rates. Two regional climate models (RCMs) were used and different assumptions about seasonality, acclimatisation and the estimation of excess deaths were made in order to represent uncertainty explicitly. An exploratory Bayesian analysis was used to investigate the sensitivity of the result to input assumptions. Annual heat-related death rates are estimated to increase from between 5.4 and 6 (per 100,000) for 1980-1998 to between 5.8 and 15.1 for the 2020s. By the 2050s, the potential increase ranges from 7.3 to 35.6. The burden of deaths is decreased if acclimatisation is factored in. Through a Bayesian analysis it is shown that, for the tested variables, future heat-related mortality is most sensitive to the choice of RCM and least to the method of calculating the excess deaths.  相似文献   

8.
Grazing livestock are an important source of food and income for millions of people worldwide. Changes in mean climate and increasing climate variability are affecting grasslands' carrying capacity, thus threatening the livelihood of millions of people as well as the health of grassland ecosystems. Compared with cropping systems, relatively little is known about the impact of such climatic changes on grasslands and livestock productivity and the adaptation responses available to farmers. In this study, we analysed the relationship between changes in mean precipitation, precipitation variability, farming practices and grazing cattle using a system dynamics approach for a semi‐arid Australian rangeland system. We found that forage production and animal stocking rates were significantly affected by drought intensities and durations as well as by long‐term climate trends. After a drought event, herd size recovery times ranged from years to decades in the absence of proactive restocking through animal purchases. Decreases in the annual precipitation means or increases in the interannual (year‐to‐year) and intra‐annual (month‐to‐month) precipitation variability, all reduced herd sizes. The contribution of farming practices versus climate effect on herd dynamics varied depending on the herd characteristics considered. Climate contributed the most to the variance in stocking rates, followed by forage productivity levels and feeding supplementation practices (with or without urea and molasses). While intensification strategies and favourable climates increased long‐term herd sizes, they also resulted in larger reductions in animal numbers during droughts and raised total enteric methane emissions. In the face of future climate trends, the grazing sector will need to increase its adaptability. Understanding which farming strategies can be beneficial, where, and when, as well as the enabling mechanisms required to implement them, will be critical for effectively improving rangelands and the livelihoods of pastoralists worldwide.  相似文献   

9.
Global climate change is one of the greatest threats to biodiversity; one of the most important effects is the increase in the mean earth surface temperature. However, another but poorly studied main characteristic of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We experimentally tested the effects of environmental temperature variability on characteristics associated to the fitness (body mass balance, growth rate, and survival), metabolic rate (VCO(2)) and molecular traits (heat shock protein expression, Hsp70), in an ectotherm, the terrestrial woodlouse Porcellio laevis. Our general hypotheses are that higher values of thermal amplitude may directly affect life-history traits, increasing metabolic cost and stress responses. At first, results supported our hypotheses showing a diversity of responses among characters to the experimental thermal treatments. We emphasize that knowledge about the cellular and physiological mechanisms by which animals cope with environmental changes is essential to understand the impact of mean climatic change and variability. Also, we consider that the studies that only incorporate only mean temperatures to predict the life-history, ecological and evolutionary impact of global temperature changes present important problems to predict the diversity of responses of the organism. This is because the analysis ignores the complexity and details of the molecular and physiological processes by which animals cope with environmental variability, as well as the life-history and demographic consequences of such variability.  相似文献   

10.
The effect of elevated [CO2] on the productivity of spring wheat, winter wheat and faba bean was studied in experiments in climatized crop enclosures in the Wageningen Rhizolab in 1991–93. Simulation models for crop growth were used to explore possible causes for the observed differences in the CO2 response. Measurements of the canopy gas exchange (CO2 and water vapour) were made continuously from emergence until harvest. At an external [CO2] of 700 μmol mol?1 Maximum Canopy CO2 Exchange Rate (CCERmax) at canopy closure was stimulated by 51% for spring wheat and by 71% for faba bean. At the end of the growing season, above ground biomass increase at 700 μmol mol?1 was 58% (faba bean), 35% (spring wheat) and 19% (winter wheat) and the harvest index did not change. For model exploration, weather data sets for the period 1975-88 and 1991–93 were used, assuming adequate water supply and [CO2] at 350 and 700 μmol mol?1. For spring wheat the simulated responses (35–50%) were at the upper end of the experimental results. In agreement with experiments, simulations showed smaller responses for winter wheat and larger responses for faba bean. Further model explorations showed that this differential effect in the CO2 response may not be primarily due to fundamental physiological differences between the crops, but may be at least partly due to differences in the daily air temperatures during comparable stages of growth of these crops. Simulations also showed that variations between years in CO2 response can be largely explained by differences in weather conditions (especially temperature) between growing seasons.  相似文献   

11.
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

12.
Isolated populations or those at the edge of their distribution are usually more sensitive to changes in the environment, such as climate change. For the barnacle Semibalanus balanoides (L.), one possible effect of climate change is that unpredictable spring weather could lead to the mismatching of larval release with spring phytoplankton bloom, hence reducing the recruitment. In this paper, model simulations of a variable open population with space limited recruitment were used to investigate the effects of low and zero recruitment on population abundance in S. balanoides. Data for model parameters was taken from an isolated population in the Isle of Man, British Isles. Model simulations with observed frequencies of years with low recruitment showed only small changes in population dynamics. Increased frequencies of low recruitment had large effects on the variation in population growth rate and free space and on population structure. Furthermore, populations with intermediate to high frequencies of low recruitment appeared more sensitive to additional changes in recruitment. Exchanging low recruitment with zero recruitment severely increased the risk of local extinctions. Simulations with consecutive years of low recruitment showed a substantial increase in free space and an increase in the time taken to recover to normal densities. In conclusion, model simulations indicate that variable populations can be well buffered to changes in the demography caused by introduced environmental noise, but also, that intermediate to high frequencies of disturbance can lead to a swift change in population dynamics, which in turn, may affect the dynamics of whole communities.  相似文献   

13.
As a prevalent species complex in temperate estuaries and salt marshes of the Northern Hemisphere, populations of Eurytemora affinis that inhabit these environments must be adapted to salinity fluctuations. Some populations have invaded freshwater environments. In this work, we focus on the combined effects of temperature and salinity fluctuations on mortality rates and development time of the first naupliar stages under starvation. Two temperatures (10 and 15 °C) and eight salinities, ranging from 0 to 35 psu are investigated. We show (i) that among all experimental conditions the optimal temperature and salinity for naupliar survival and development are 15 psu and 15 °C, and (ii) that only the most extreme salinities (i.e. 0 and 35 psu) have a negative effect on naupliar survival. Nauplii develop faster and reach a higher developmental stage at 15 than at 10 °C, independent of salinity. The relevance of this metabolic adaptive pattern is discussed in the general framework of in situ behavior, tidal forcing and biogeographic variability, as well as the potential sources of the observed individual variability.  相似文献   

14.
This paper aims to explain the results of an observational population study that was carried out between 1991 and 1995 in six regions (departments) in France. The study was to assess the relationship between temperature and mortality in a few areas of France that offer widely varying climatic conditions and lifestyles, to determine their thermal optimum, defined as a 3 degrees C temperature band with the lowest mortality rate in each area, and then to compare the mortality rates from this baseline band with temperatures above and below the baseline. The study period was selected because it did not include extreme cold or hot events such as a heatwave. Data on daily deaths from each department were first used to examine the entire population and then to examine men, women, various age groups and various causes of death (respiratory disease, stroke, ischaemic heart disease, other disease of the circulatory system, and all other causes excluding violent deaths). Mean temperatures were provided by the National Weather Service. The results depicted an asymmetrical V- or U-shaped relationship between mortality and temperature, with a thermal optimum lower for the elderly, and generally lower for women than for men except in Paris. The relationship was also different depending on the cause of death. In all cases, more evidence was collected showing that cold weather was more deadly than hot weather, and it would now be interesting to enlarge the study to include years with cold spells and heatwaves. Furthermore, the results obtained could be of great use in estimating weather-related mortality as a consequence of future climate-change scenarios.  相似文献   

15.
Rapid and periodic assessment of the impact of land cover change and climate variability on ecosystem services at regional levels is essential to understanding services and sustainability of ecosystems. This study focused on quantifying and assessing the changes in multiple ecosystem services in the Three-River Headwaters Region (TRHR), China in 2000–2012. Based on the widely used biophysical models including Integrated Valuation of Ecosystem Services and Trade-Offs (InVEST), Revised Wind Erosion Equation (RWSQ), and Carnegie-Ames-Stanford Approach (CASA) models, this study assessed the historical flow of regulating services, including soil conservation, water yield, and carbon sequestration, and provisioning service food provision. The soil conservation function of ecosystem was slightly enhanced as a whole, and water yield increased sharply, with both the soil conservation and water yield showing an increasing spatial homogenization. The net primary productivity (NPP) and food production increased substantially from 2000 to 2012. Ecosystem services are closely and complexly interlinked. The correlation analyses indicated a trade-off between the water yield and carbon sequestration, however, a synergy between soil conservation and carbon sequestration. Congruence between the three different ecosystem provisioning services, including pasture, meat, and grain, was found. There was also a synergy between food production and ecosystem carbon sequestration in the TRHR. Climatic variability and vegetation restoration are important for the ecosystem services flow. Correlation analyses showed that the increase in precipitation significantly enhanced the water yield (P < 0.01) and soil erosion (P < 0.01), while the temperature increase influenced positively the NPP (P < 0.1). The experience of ecological rehabilitation and the change in key ecosystem services in the TRHR exemplified the positive effects of environmental policies and the necessity of adopting an adaptive management approach. Thus the ecological construction and policy making should take climate variability into account, and facilitate synergies on multiple ecosystem services in order to maximize human well-being and preserve its natural ecosystems.  相似文献   

16.
流域季节性径流变化反映了年内水资源的动态特征。在以森林为主的流域中,森林变化和气候变异被普遍认为是影响流域水文过程的两大驱动因素。因此在全球气候变化背景下,研究流域森林恢复和气候变异对流域季节性径流的影响,可为协调区域碳-水关系和制订可持续的森林经营管理策略提供参考。选择鄱阳湖流域上游的平江流域为研究对象,根据流域历史森林覆盖率变化情况,将研究期划分为参考期(1961-1985)和森林恢复期(1986-2006),采用Mann-Kendall趋势分析研究流域长时期水文气象数据是否存在显著变化趋势。同时引入月干旱指数(潜在蒸散发和有效降雨的比率),将一年定义为能量限制季(1-6月)和水分限制季(7-12月),结合扩展的Budyko模型定量分析平江流域森林恢复和气候变异对季节性径流的相对贡献。在本研究流域整个研究期内(1961-2006),通过Mann-Kendall趋势分析发现,研究流域水分限制季径流呈现显著增加趋势,而能量限制季水文和气候变量变化趋势均不显著。其次,相较于参考期,流域森林恢复使能量限制季径流降低了11.71 mm/a (24.40%),使水分限制季径流增加了12.27 mm/a (17.23%)。同时,气候变异导致能量限制季径流减少了36.28 mm/a (75.60%),而使水分限制季径流增加了58.94 mm/a (82.77%)。上述研究结果表明,森林恢复对径流影响具有累积效应。森林恢复对季节性径流具有积极的调节作用,同时季节性径流对森林恢复的响应存在时间差,而且森林恢复对径流的影响在能量限制季和水分限制季具有相互抵消的作用,气候变异与森林恢复的影响效应类似。此外,本研究也证实,平江流域季节性径流变化主要是受气候变化主导,但森林恢复对季节性径流的贡献也不容忽视。  相似文献   

17.
Anthropogenically induced global climate change has important implications for marine ecosystems with unprecedented ecological and economic consequences. Climate change will include the simultaneous increase of temperature and CO2 concentration in oceans. However, experimental manipulations of these factors at the community scale are rare. In this study, we used an experimental approach in mesocosms to analyse the combined effects of elevated CO2 and temperature on macroalgal assemblages from intertidal rock pools. Our model systems were synthetic assemblages of varying diversity and understory component and canopy species identity. We used assemblages invaded by the non‐indigenous canopy forming alga Sargassum muticum and assemblages with the native canopy species Cystoseira tamariscifolia. We examined the effects of both climate change factors on several ecosystem functioning variables (i.e. photosynthetic efficiency, productivity, respiration and biomass) and how these effects could be shaped by the diversity and species identity of assemblages. CO2 alone or in combination with temperature affected the performance of macroalgae at both individual and assemblage level. In particular, high CO2 and high temperature (20°C) drastically reduced the biomass of macroalgal assemblages and affected their productivity and respiration rates. The identity of canopy species also played an important role in shaping assemblage responses, whereas species richness did not seem to affect such responses. Species belonging to the same functional effect group responded differently to the same environmental conditions. Data suggested that assemblages invaded with S. muticum might be more resistant in a future scenario of climate change. Thus, in a future scenario of increasing temperature and CO2 concentration, macroalgal assemblages invaded with canopy‐forming species sharing response traits similar to those of S. muticum could be favoured.  相似文献   

18.
19.
The brackish water copepod Eurytemora affinis is the most abundant copepod species in the low salinity zone (2-15) of the Seine estuary. Despite its ecological importance, little is known about its population dynamics in the Seine. We studied the effects of temperature (10 °C and 15 °C) and salinity (5, 15 and 25) on reproduction under non-limiting food conditions. We used experiments to determine multiple reproductive parameters for E. affinis. In all experiments, we fed E. affinis a mixture of Rhodomonas marina and Isochrysis galbana. Couples of pre-adult females (C5) and adult males were mated until the female extruded a clutch of eggs and then individual females were observed every 6-12 hours until death to determine (a) embryonic development time, (b) inter clutch time and (c) clutch size throughout their adult lifespan. All reproductive parameters were negatively affected by low temperature (10 °C) and by high salinity (25). At 10 °C and a salinity of 25, mortality during the post-embryonic period was extremely high (85%). Differences in all reproductive parameters between salinities 5 and 15 were minimal. From 15 °C to 10 °C mean latency time (time between hatching of eggs and extrusion of new ones) increased from 0.8 to 2.25 days, the mean embryonic development time from 2.2 to 3.2 days and the mean clutch size decreased from 38 to 22 eggs female- 1. The mean clutch size decreased when females reached a critical age. The hatching success was high (near 95%) under all conditions except at high salinity. Egg production rates showed no significant differences between salinities 5 and 15 and were significantly higher at 15 °C (13 eggs female- 1 day- 1 at salinity 5 and 15) than at 10 °C (4 eggs female- 1 day- 1). These values at 15 °C were higher compared to those from other populations of E. affinis in estuaries or lakes. The high reproductive potential of E. affinis from the Seine estuary at 15 °C and low salinities explain its high densities in the low salinity zone during spring and early summer.  相似文献   

20.
Accelerated climate change represents a major threat to the health of the planet's biodiversity. Particularly, lizards of the genus Xenosaurus might be negatively affected by this phenomenon because several of its species have restricted distributions, low vagility, and preference for low temperatures. No study, however, has examined the climatic niche of the species of this genus and how their distribution might be influenced by different climate change scenarios. In this project, we used a maximum entropy approach to model the climatic niche of 10 species of the genus Xenosaurus under present and future suitable habitat, considering a climatic niche conservatism context. Therefore, we performed a similarity analysis of the climatic niche between each species of the genus Xenosaurus. Our results suggest that a substantial decrease in suitable habitat for all species will occur by 2070. Among the most affected species, Xtzacualtipantecus will not have suitable conditions according to its climatic niche requirements and Xphalaroanthereon will lose 85.75% of its current suitable area. On the other hand, we found low values of conservatism of the climatic niche among species. Given the limited capacity of dispersion and the habitat specificity of these lizards, it seems unlikely that fast changes would occur in the distribution of these species facing climate change. The low conservatism in climatic niche we found in Xenosaurus suggests that these species might have the capacity to adapt to the new environmental conditions originated by climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号