首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Nonstructural protein 5B (NS5B), the RNA-dependent RNA polymerase of Hepatitis C Virus (HCV), plays a key role in viral amplification and is an attractive and most explored target for discovery of new therapeutic agents for Hepatitis C. Though safe and effective, NS5B inhibitors were launched in 2013 (Sovaldi) and 2014 (Harvoni, Viekira Pak), the high price tags of these medications limit their use among poor people in developing countries. Hence, still there exists a need for cost-effective and short duration anti-HCV agents especially those targeting niche patient population who were non-respondent to earlier therapies or with comorbid conditions. The present study describes the discovery of novel non-nucleoside (NNI) inhibitors of NS5B using a series of rational drug design techniques such as virtual screening, scaffold matching and molecular docking. 2D and 3D structure based virtual screening technique identified 300 hit compounds. Top 20 hits were screened out from identified hits using molecular docking technique. Four molecules, that are representative of 20 hits were evaluated for binding affinity under in vitro conditions using surface plasmon resonance-based assay and the results emphasized that compound with CoCoCo ID: 412075 could exhibit good binding response toward NS5B and could be a potential candidate as NS5B inhibitor.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
A library of tetrapeptides was evaluated for Hepatitis C Virus NS3 protease inhibitor activity in an in vitro assay system comprising the native bifunctional full-length NS3 (protease-helicase/NTPase) protein. Tetrapeptides with Ki values in the high nanomolar range were identified, for example Suc-Chg-Glu-2-Nal-Cys (Ki=0.27±0.03 μM) and Suc-Dif-Glu-Glu-Cys (Ki=0.40±0.10 μM). Furthermore, it was shown that the inhibitory potencies are not affected significantly by assay ionic strength. As suggested by molecular modelling, potential binding interactions of the tetrapeptide inhibitors with the helicase domain might explain the data and structure–activity relationships thus obtained. Hence, we postulate that the full-length NS3 assay is a relevant system for inhibitor identification, offering new opportunities for inhibitor design.  相似文献   

3.
The binding affinity of four palm and thumb site representative non-nucleoside inhibitors (NNIs) of HCV polymerase NS5B to wild-type and resistant NS5B polymerase proteins was determined, and the influence of RNA binding on NNI binding affinity was investigated. NNIs with high binding affinity potently inhibited HCV RNA polymerase activity and replicon replication. Among the compounds tested, HCV-796 showed slow binding kinetics to NS5B. The binding affinity of HCV-796 to NS5B increased 27-fold over a 3-h incubation period with an equilibrium Kd of 71 ± 2 nm. Slow binding kinetics of HCV-796 was driven by slow dissociation from NS5B with a koff of 4.9 ± 0.5 × 10−4 s−1. NS5B bound a long, 378-nucleotide HCV RNA oligonucleotide with high affinity (Kd = 6.9 ± 0.3 nm), whereas the binding affinity was significantly lower for a short, 21-nucleotide RNA (Kd = 155.1 ± 16.2 nm). The formation of the NS5B-HCV RNA complex did not affect the slow binding kinetics profile and only slightly reduced NS5B binding affinity of HCV-796. The magnitude of reduction of NNI binding affinity for the NS5B proteins with various resistance mutations in the palm and thumb binding sites correlated well with resistance -fold shifts in NS5B polymerase activity and replicon assays. Co-crystal structures of NS5B-Con1 and NS5B-BK with HCV-796 revealed a deep hydrophobic binding pocket at the palm region of NS5B. HCV-796 interaction with the induced binding pocket on NS5B is consistent with slow binding kinetics and loss of binding affinity with mutations at amino acid position 316.Hepatitis C virus (HCV)4 constitutes a global health problem. Current therapies are unable to effectively eliminate viral infection in a significant number of patients. The RNA-dependent RNA polymerase (RdRp) of HCV NS5B is an attractive target for the development of orally bioavailable small molecule inhibitors (1, 2). The structure of the NS5B apoenzyme and the NS5B-RNA complex reveals the characteristic right hand architecture of polymerase enzymes, comprising three distinct domains (palm, thumb, and finger) encircling the enzyme active site located in the palm domain (36). The structural and biochemical characterization of HCV NS5B polymerase can provide a basis for drug design efforts, and the elucidation of the mechanism of inhibition can guide the optimization of inhibitor efficiency against wild-type and resistant mutants.Among the extensively investigated non-nucleosides documented to inhibit the RdRp activity of HCV NS5B, derivatives of various benzofuran and benzothiadiazine have been reported to bind to allosteric binding sites in the palm domain of NS5B (7, 8). The palm domain, whose geometry is conserved in virtually all DNA and RNA polymerases, contains catalytic aspartic acids responsible for the nucleotidyl transfer reaction. The benzofuran compound HCV-796 has been shown to have significant antiviral effects in patients chronically infected with HCV (9, 10). In addition, two series of compounds based on the thiophene and benzimidazole scaffolds have been reported to inhibit NS5B by binding to two different binding pockets in the thumb domain of NS5B (11, 12). The thumb domain is connected to the palm domain by a β-hairpin termed the primer grip motif. The C-terminal region of the thumb protrudes toward the active site (3). The thumb binding inhibitors have been proposed to inhibit the RdRp activity of NS5B, perhaps by interfering with template/primer interaction and conformational dynamics of the protein (13, 14).Despite the elucidation of a number of NNIs that bind to the thumb and palm binding sites, the mechanism by which NNIs cause inhibition of RNA synthesis is unclear. Also, our understanding of the kinetics of NNI interaction with NS5B, the role of NNI binding and kinetics for inhibition, and the inhibitor efficacy on NS5B-resistant mutations remains incomplete. The four representative palm- and thumb-binding NNIs selected in this study have been reported to effectively inhibit replication of subgenomic replicons with low toxicity. Noncompetitive inhibition of NS5B polymerase activity with respect to NTPs has been reported (2, 15, 16). Based on co-crystallization studies with NS5B, it has been proposed that allosteric inhibitors may lock the NS5B protein in an inactive formation by binding tightly to the protein (16, 17). It is important to understand how the binding affinity relates to inhibition potency and resistance to HCV inhibition. Because the intrinsic potency of slowly binding compounds can be underestimated in the short time scale of biochemical studies, insights into slowly binding compounds may help to identify potent inhibitors. Moreover, the effect of the HCV RNA template on binding of NNIs to the enzyme-RNA complex remains to be addressed.Due to the error-prone nature of HCV polymerase in HCV replication, drug resistance can occur in patients who are treated with antiviral therapy directed at HCV-specific enzymes, and this resistance can limit their efficacy (16). Various in vitro studies using an HCV subgenomic replicon system have identified mutations that can confer resistance to inhibition by NNIs (2, 8, 16). Many of the mutations produce cross-resistance to the same family of inhibitors, which will affect the design of optimal combination therapies. Achieving optimal and sustained binding of these antiviral agents to the NS5B polymerase is crucial to ensure a high probability of clinical success.In this work, we have used biochemical and biophysical approaches to investigate binding affinities and binding kinetics of structurally diverse palm- and thumb-binding allosteric NS5B inhibitors. The binding of NNIs to wild-type and NNI-resistant NS5B proteins was studied and compared with inhibition and resistance. First, the NNI binding affinity for the NS5B protein was determined in the presence and absence of HCV RNA template, using a newly developed assay measuring the quenching of NS5B intrinsic fluorescence (FQ) in 96-well plates. The time-dependent NNI binding affinities and NNI binding equilibrium were used to identify slowly binding NNIs. Second, various palm and thumb site-specific mutant proteins were used to determine the mechanism of HCV resistance, and the binding affinities of NNIs were compared with the inhibition potencies determined in the HCV RdRp polymerase assay and HCV replicon assay. Finally, co-crystallization of HCV-796 with NS5B proteins from the Con1 and BK strains was performed to address the role of critical residues involved in HCV-796 resistance and NS5B polymorphism.  相似文献   

4.
Fragment-based screening by SPR enabled the discovery of chemical diverse fragment hits with millimolar binding affinities to the peptidyl-prolyl isomerase Cyclophilin D (CypD). The CypD protein crystal structures of 6 fragment hits provided the basis for subsequent medicinal chemistry optimization by fragment merging and linking yielding three different chemical series with either urea, oxalyl or amide linkers connecting millimolar fragments in the S1′ and S2 pockets. We successfully improved the in vitro CypD potencies in the biochemical FP and PPIase assays and in the biophysical SPR binding assay from millimolar towards the low micromolar and submicromolar range by >1000-fold for some fragment derivatives. The initial SAR together with the protein crystal structures of our novel CypD inhibitors provide a suitable basis for further hit-to-lead optimization.  相似文献   

5.
Prostate cancer PC3 cells expressed constitutive protein kinase C (PKC) activity that under basal conditions suppressed neurotensin (NT) receptor function. The endogenous PKC activity, assessed using a cell-based PKC substrate phosphorylation assay, was diminished by PKC inhibitors and enhanced by phorbol myristic acid (PMA). Accordingly, PKC inhibitors (staurosporine, Go-6976, Go-6983, Ro-318220, BIS-1, chelerythrine, rottlerin, quercetin) enhanced NT receptor binding and NT-induced inositol phosphate (IP) formation. In contrast, PMA inhibited these functions. The cells expressed conventional PKCs (, βI) and novel PKCs (δ, ε), and the effects of PKC inhibitors on NT binding were blocked by PKC downregulation. The inhibition of NT binding by PMA was enhanced by okadaic acid and blocked by PKC inhibitors. However, when some PKC inhibitors (rottlerin, BIS-1, Ro-318220, Go-69830, quercetin) were used at higher concentrations (> 2 μM), they had a different effect characterized by a dramatic increase in NT binding and an inhibition of NT-induced IP formation. The specificity of the agents implicated novel PKCs in this response and indeed, the inhibition of NT-induced IP formation was reproduced by PKCδ or PKCε knockdown. The inhibition of IP formation appeared to be specific to NT since it was not observed in response to bombesin. Scatchard analyses indicated that the PKC-directed agents modulated NT receptor affinity, not receptor number or receptor internalization. These findings suggest that PKC participates in heterologous regulation of NT receptor function by two mechanisms: a) — conventional PKCs inhibit NT receptor binding and signaling; and b) — novel PKCs maintain the ability of NT to stimulate PLC. Since NT can activate PKC upon binding to its receptor, it is possible that NT receptor is also subject to homologous regulation by PKC.  相似文献   

6.
Development of drug-resistant mutations has been a major problem with all currently developed Hepatitis C Virus (HCV) NS3/4A inhibitors, including the two FDA approved drugs, significantly reducing the efficacy of these inhibitors. The high incidence of drug-resistance mutations and the limited utility of these inhibitors against only genotype 1 highlight the need for novel, broad-spectrum HCV therapies. Here we used high-throughput screening (HTS) to identify low molecular weight inhibitors against NS3/4A from multiple genotypes. A total of 40,967 compounds from four structurally diverse molecular libraries were screened by HTS using fluorescence-based enzymatic assays, followed by an orthogonal binding analysis using surface plasmon resonance (SPR) to eliminate false positives. A novel small molecule compound was identified with an IC50 value of 2.2 µM against the NS3/4A from genotype 1b. Mode of inhibition analysis subsequently confirmed this compound to be a competitive inhibitor with respect to the substrate, indicating direct binding to the protease active site, rather than to the allosteric binding pocket that was discovered to be the binding site of a few recently discovered small molecule inhibitors. This newly discovered inhibitor also showed promising inhibitory activity against the NS3/4As from three other HCV genotypes, as well as five common drug-resistant mutants of genotype 1b NS3/4A. The inhibitor was selective for NS3 from multiple HCV genotypes over two human serine proteases, and a whole cell lysate assay confirmed inhibitory activity in the cellular environment. This compound provides a lead for further development of potentially broader spectrum inhibitors.  相似文献   

7.
Over the past years, improvements in high-throughput screening (HTS) technology and compound libraries have resulted in a dramatic increase in the amounts of good-quality screening hits, and there is a growing need for follow-on hit profiling assays with medium throughput to further triage hits. Here the authors present such assays for the colony-stimulating factor 1 receptor (CSF1R, Fms), including tests for cellular activity and a homogeneous assay to measure affinity for inactive CSF1R. They also present a high-throughput assay to measure target residence time, which is based on competitive binding kinetics. To better fit k(off) rates, they present a modified mathematical model for competitive kinetics. In all assays, they profiled eight reference inhibitors (imatinib, sorafenib, sunitinib, tandutinib, dasatinib, GW2580, Ki20227, and J&J's pyrido[2,3-d]pyrimidin-5-one). Using the known biochemical selectivities of these inhibitors, which can be quantified using metrics such as the selectivity entropy, the authors have determined which assay readout best predicts hit selectivity. Their profiling shows surprisingly that imatinib has a preference for the active form of CSF1R and that Ki20227 has an unusually slow target dissociation rate. This confirms that follow-on hit profiling is essential to ensure that the best hits are selected for lead optimization.  相似文献   

8.
9.
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.  相似文献   

10.
Chemically diverse fragment hits of focal adhesion kinase (FAK) were discovered by surface plasmon resonance (SPR) screening of our in-house fragment library. Site specific binding of the primary hits was confirmed in a competition setup using a high-affinity ATP-site inhibitor of FAK. Protein crystallography revealed the binding mode of 41 out of 48 selected fragment hits within the ATP-site. Structural comparison of the fragment binding modes with a DFG-out inhibitor of FAK initiated first synthetic follow-up optimization leading to improved binding affinity.  相似文献   

11.
A combination approach of a fragment screening and “SAR by catalog” was used for the discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Initial screening of 3695-fragment library against bromodomain 1 of BRD4 using thermal shift assay (TSA), followed by initial hit validation, resulted in 73 fragment hits, which were used to construct a follow-up library selected from available screening collection. Additionally, analogs of inactive fragments, as well as a set of randomly selected compounds were also prepared (3?×?3200 compounds in total). Screening of the resulting sets using TSA, followed by re-testing at several concentrations, counter-screen, and TR-FRET assay resulted in 18 confirmed hits. Compounds derived from the initial fragment set showed better hit rate as compared to the other two sets. Finally, building dose-response curves revealed three compounds with IC50?=?1.9–7.4?μM. For these compounds, binding sites and conformations in the BRD4 (4UYD) have been determined by docking.  相似文献   

12.
HCV NS3 protease domain has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting HCV genotype 1 infection. HCV genotype 4a dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS3 of genotype 4a using homology modeling, PLIF (protein–ligand interaction fingerprint), docking, pharmacophore, and dynamic simulation. A high-quality 3D model of HCV NS3 protease of genotype 4a was constructed using crystal structure of HCV NS3 protease of genotype 1b (PDB ID: 4u01) as a template. PLIF was generated using five crystal structures of HCV NS3 (PDB ID: 4u01, 3kee, 4ktc, 4i33, and 5epn) which revealed the most important residues and their interactions with the co-crystalized ligands. A 3D pharmacophore model consisting of six features was developed from the generated PLIF data and then used as a screening filter for 11,244 compounds. Only 423 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. The highest ranked five hits from docking result (compound (C1–C5)) were selected for further analysis. They exhibited stronger interaction and higher binding affinity than HCV NS3 protease ligands. Dynamic simulation of the protein–best lead complex was performed to validate and augment the virtual screening results and it showed that these compounds have a strong binding affinity and could be very effective in treating HCV genotype 4a infections.  相似文献   

13.
Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50 = 1.4 μM), suramin sodium salt (IC50 = 3.6 μM), NF 023 hydrate (IC50 = 6.2 μM) and tyrphostin AG 538 (IC50 = 3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.  相似文献   

14.
15.
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B hepatitis where no effective treatment is available. The HCV NS5B with RNA-dependent RNA polymerase (RdRp) activity is a key target for the treatment of HCV infection. Here we report novel NS5B polymerase inhibitors identified by virtual screening and in vitro evaluation of their inhibitory activities. On the basis of a newly identified binding pocket of NS5B, distinct from the nucleotide binding site but highly conserved among various HCV isolates, we performed virtual screening of compounds that fit this binding pocket from the available chemical database of 3.5 million compounds. The inhibitory activities of the in silico selected 119 compounds were estimated with in vitro RdRp assay. Three compounds with IC50 values of about 20 μM were identified, and their kinetic analyses suggest that these compounds are noncompetitive inhibitors with respect to the ribonucleotide substrate. Furthermore, the single-point mutations of the conserved residues in the binding pocket of NS5B resulted in the significant decrease of the RdRp activity, indicating that the binding pocket presented here might be important for the therapeutic intervention of HCV. These novel inhibitors would be useful for the development of effective anti-HCV agents.  相似文献   

16.
The interaction of the hepatitis C virus (HCV) RNA-dependent RNA polymerase with RNA substrate is incompletely defined. We have characterized the activities of the HCV NS5B polymerase, modified by different deletions and affinity tags, with a routinely used homopolymeric substrate, and established apparent affinities of the various NS5B constructs both for the NTP and the template/primer substrates. We identified a uniquely tagged HCV NS5B RNA polymerase construct with a lower affinity (higher K(m)) than mature HCV NS5B for template/ primer substrate and highlighted the use of such a polymerase for the identification of inhibitors of NS5B activity, particularly inhibitors of productive RNA binding. The characterization of specific benzimidazole-5-carboxamide-based inhibitors, identified in a screening campaign, revealed that this class of compounds was non-competitive with regard to NTP incorporation and had no effect on processive elongation, but inhibited an initiation phase of the HCV polymerase activity. The potency of these compounds versus a panel of different NS5B polymerase constructs was inversely proportional to the enzymes' affinities for template/primer substrate. The benzimidazole-5-carboxamide compounds also inhibited the full-length, untagged NS5B de novo initiation reaction using HCV 3'-UTR substrate RNA and expand the diversifying pool of potential HCV replication inhibitors.  相似文献   

17.
Abstract

p21-activated kinases (Paks) play an integral component in various cellular diverse processes. The full activation of Pak is dependent upon several serine residues present in the N-terminal region, a threonine present at the activation loop, and finally the phosphorylation of these residues ensure the complete activation of Pak1. The present study deals with the identification of novel potent candidates of Pak1 using computational methods as anti-cancer compounds. A diverse energy based pharmacophore (e-pharmacophore) was developed using four co-crystal inhibitors of Pak1 having pharmacophore features of 5 (DRDRR), 6 (DRHADR), and 7 (RRARDRP and DRRDADH) hypotheses. These models were used for rigorous screening against e-molecule database. The obtained hits were filtered using ADME/T and molecular docking to identify the high affinity binders. These hits were subjected to hierarchical clustering using dendritic fingerprint inorder to identify structurally diverse molecules. The diverse hits were scored against generated water maps to obtain WM/MM ΔG binding energy. Furthermore, molecular dynamics simulation and density functional theory calculations were performed on the final hits to understand the stability of the complexes. Five structurally diverse novel Pak1 inhibitors (4835785, 32198676, 32407813, 76038049, and 32945545) were obtained from virtual screening, water thermodynamics and WM/MM ΔG binding energy. All hits revealed similar mode of binding pattern with the hinge region residues replacing the unstable water molecules in the binding site. The obtained novel hits could be used as a platform to design potent drugs that could be experimentally tested against cancer patients having increased Pak1 expression.  相似文献   

18.
Elucidation of the mechanism of action of the HCV NS5B polymerase thumb site II inhibitors has presented a challenge. Current opinion holds that these allosteric inhibitors stabilize the closed, inactive enzyme conformation, but how this inhibition is accomplished mechanistically is not well understood. Here, using a panel of NS5B proteins with mutations in key regulatory motifs of NS5B – the C-terminal tail and β-loop – in conjunction with a diverse set of NS5B allosteric inhibitors, we show that thumb site II inhibitors possess a distinct mechanism of action. A combination of enzyme activity studies and direct binding assays reveals that these inhibitors require both regulatory elements to maintain the polymerase inhibitory activity. Removal of either element has little impact on the binding affinity of thumb site II inhibitors, but significantly reduces their potency. NS5B in complex with a thumb site II inhibitor displays a characteristic melting profile that suggests stabilization not only of the thumb domain but also the whole polymerase. Successive truncations of the C-terminal tail and/or removal of the β-loop lead to progressive destabilization of the protein. Furthermore, the thermal unfolding transitions characteristic for thumb site II inhibitor – NS5B complex are absent in the inhibitor – bound constructs in which interactions between C-terminal tail and β-loop are abolished, pointing to the pivotal role of both regulatory elements in communication between domains. Taken together, a comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop.  相似文献   

19.
Three groups of isomeric nitrogen heterocycles, phenylpyridines, phenylimidazoles and pyridylimidazoles were studied in relation to the effect of steric factors on type II binding to cytochrome P-450 and inhibition of aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity in hepatic microsomes from phenobarbital(PB)- and β-naphthoflavone(βNF)-induced rats. Type II binding affinity was lower (higher Ks) in compounds with substituents on the carbon adjacent to the nitrogen undergoing ligand interaction than in those where steric hindrance near the nitrogen was minimal. Binding affinities of the compounds as measured by their Ks values, were quite similar in both PB- and βNF-induced microsomes. In PB-induced microsomes, type II binding affinity was generally reflected by the ability of the compounds to inhibit AHH activity. In contrast, most of the compounds evaluated were inactive as AHH inhibitors in βNF-induced microsomes.  相似文献   

20.
The human mitochondrial peptide deformylase (HsPDF) provides a potential new target for broadly acting antiproliferative agents. To identify novel nonpeptidomimetic and nonhydroxamic acid-based inhibitors of HsPDF, the authors have developed a high-throughput screening (HTS) strategy using a fluorescence polarization (FP)-based binding assay as the primary assay for screening chemical libraries, followed by an enzymatic-based assay to confirm hits, prior to characterization of their antiproliferative activity against established tumor cell lines. The authors present the results and performance of the established strategy tested in a pilot screen of 2880 compounds and the identification of the 1st inhibitors. Two common scaffolds were identified within the hits. Furthermore, cytotoxicity studies revealed that most of the confirmed hits have antiproliferative activity. These findings demonstrate that the designed strategy can identify novel functional inhibitors and provide a powerful alternative to the use of functional assays in HTS and support the hypothesis that HsPDF inhibitors may constitute a new class of antiproliferative agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号