首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active site titration by a reversible tight-binding inhibitor normally depends on prior knowledge of the inhibition constant. Conversely, the determination of tight-binding inhibition constants normally requires prior knowledge of the active enzyme concentration. Often, neither of these quantities is known with sufficient accuracy. This paper describes experimental conditions under which both the enzyme active site concentration and the tight-binding inhibition constant can be determined simultaneously from a single dose-response curve. Representative experimental data are shown for the inhibition of human kallikrein.  相似文献   

2.
A novel rate equation to characterize the dose-response behavior of a moderately potent ("classical") enzyme inhibitor contaminated with a very potent ("tight-binding") impurity is derived. Mathematical properties of the new rate equation show that, for such contaminated materials, experimentally observed I(50) values are ambiguous. The four-parameter logistic equation, conventionally used to determine I(50) values, cannot be used to detect the presence of tight-binding impurities in inhibitor samples. In contrast, fitting the newly derived rate equation to inhibitor dose- response curves can, in favorable cases, reveal whether the unknown material is chemically homogeneous or whether it is contaminated with a tight-binding impurity. The limitations of our method with respect to the detectable range of inhibition constants (both classical and tight-binding) were examined by using Monte-Carlo simulations. To test the new analytical procedure experimentally, we added a small amount (0.02 mole%) of a tight-binding impurity (K(i)=0.065 nM) to an otherwise weak inhibitor of human mast-cell tryptase (K(i)=50.4 microM). The resulting material was treated as "unknown." Our kinetic equation predicts that such adulterated material should show I(50)=0.40 microM, which was identical to the experimentally observed value. The best-fit value of the apparent inhibition constants for the tight-binding inhibitor was K(i)=(0.107+/-0.035)nM, close to the true value of 0.065 nM.  相似文献   

3.
The rate equation for a tight-binding inhibitor of an enzyme-catalysed first-order reversible reaction was used to derive two integrated equations. One of them covers the situations in which competitive, uncompetitive or non-competitive inhibition occurs and the other refers to the special non-competitive case where the two inhibition constants are equal. For these equations, graphical and non-linear regression methods are proposed for distinguishing between types of inhibition and for calculating inhibition constants from progress-curve data. The application of the non-linear regression to the analysis of stimulated progress curves in the presence of a tight-binding inhibitor is also presented. The results obtained are valid for any type of 'dead-end'-complex-forming inhibitor and can be used to characterize an unknown inhibitor on the basis of progress curves.  相似文献   

4.
The enzyme complex prothrombinase plays a pivotal role in fibrin clot development through the production of thrombin, making this enzyme complex an attractive target for therapeutic regulation. This study both functionally and structurally characterizes a potent, highly selective, active site directed inhibitor of human factor Xa and prothrombinase, PD0313052, and identifies structurally conserved residues in factor Xa and prothrombinase. Analyses of the association and dissociation of PD0313052 with human factor Xa identified a reversible, slow-onset mechanism of inhibition and a simple, single-step bimolecular association between factor Xa and PD0313052. This interaction was governed by association (k(on)) and dissociation (k(off)) rate constants of (1.0 +/- 0.1) x 10(7) M(-1) s(-1) and (1.9 +/- 0.5) x 10(-3) s(-1), respectively. The inhibition of human factor Xa by PD0313052 displayed significant tight-binding character described by a Ki* = 0.29 +/- 0.08 nM. Similar analyses of the inhibition of human prothrombinase by PD0313052 also identified a slow-onset mechanism with a Ki* = 0.17 +/- 0.03 nM and a k(on) and k(off) of (0.7 +/- 0.1) x 10(7) M(-1) s(-1) and (1.7 +/- 0.8) x 10(-3) s(-1), respectively. Crystals of factor Xa and PD0313052 demonstrated hydrogen bonding contacts within the S1-S4 pocket at residues Ser195, Asp189, Gly219, and Gly216, as well as interactions with aromatic residues within the S4 pocket. Overall, these data demonstrate that the inhibition of human factor Xa by PD0313052 occurs via a slow, tight-binding mechanism and indicate that active site residues of human factor Xa, including the catalytic Ser195, are effectively unaltered following assembly into prothrombinase.  相似文献   

5.
When two or more tight-binding inhibitors are present in an enzyme assay, the equation that relates the initial velocity v to the concentration of reactants cannot be written in an algebraically explicit form. Rather, for n inhibitors it is an implicit polynomial equation of degree n + 1 with respect to v. The complexity of the polynomial coefficients dramatically increases with each added inhibitor. Solving the transcendental rate equation by traditional methods of numerical mathematics has proven tedious because of the sensitivity of these methods to initial estimates and because of the existence of multiple roots. However, the equation can be rearranged into a convenient recursive form, one in which the velocity appears on both sides and the solution is found iteratively. The algebraic form of the recursive rate equation is remarkably simple and differs from the rate equation for classical rather than tight-binding inhibition only by an added term. The numerical stability and the speed of convergence were tested on the case of two competitive inhibitors. Initial estimates of velocity that spanned 12 orders of magnitude converged within five iterations. The velocities computed with the recursive method for a single tight-binding inhibitor were identical with the values predicted by the Morrison equation. The method is used to analyze experimental data for the inhibition of rat liver dihydrofolate reductase by mixtures of the anticancer drug methotrexate and its metabolic precursor form, methotrexate-alpha-aspartate (a prodrug).  相似文献   

6.
A complete initial rate analysis of the forward reaction catalyzed by 15-hydroxyprostaglandin dehydrogenase from human term placenta was carried out at pH 7.4 (100mM triethanolamine) with the substrates NAD, and the prostaglandins E1, E2 and F2alpha. The limiting Michaelis constants, the dissociation constants, and the limiting maximum velocities for these substrates were calculated by fitting the obtained data by weighted linear regression analysis to the complete rate equation. The product inhibition of the reaction by NADH and 15-oxoprostaglandin was studied and the inhibition constants were graphically determined. The initial rate and inhibition patterns obtained indicate that the reaction follows kinetically an ordered Bi Bi mechanism. The prostaglandin F2alpha analogues ICI 81,008 and ICI 79,939 were not utilized by the enzyme. With ICI 81,008 a slight inhibition of the enzymatic reaction with prostaglandin F2alpha was observed, whereas ICI 79,939 showed no effect. The results are discussed with respect to their possible biological significance.  相似文献   

7.
Investigations have been made of the slow, tight-binding inhibition by methotrexate of the reaction catalyzed by dihydrofolate reductase from Streptococcus faecium A. Quantitative analysis has shown that progress curve data are in accord with a mechanism that involves the rapid formation of an enzyme-NADPH-methotrexate complex that subsequently undergoes a relatively slow, reversible isomerization reaction. From the Ki value for the dissociation of methotrexate from the E-NADPH-methotrexate complex (23 nM) and values of 5.1 and 0.013 min-1 for the forward and reverse rate constants of the isomerization reaction, the overall inhibition constant for methotrexate was calculated to be 58 pM. The formation of an enzyme-methotrexate complex was demonstrated by means of fluorescence quenching, and a value of 0.36 muM was determined for its dissociation constant. The same technique was used to determine dissociation constants for the reaction of methotrexate with the E-NADP and E-NADPH complexes. The results indicate that in the presence of either NADPH or NADP there is enhancement of the binding of methotrexate to the enzyme. It is proposed that methotrexate behaves as a pseudosubstrate for dihydrofolate reductase.  相似文献   

8.
Sulfonylamido(ureido) derivatives of histamine were synthesized by an original procedure in order to obtain tight-binding activators of the zinc enzyme carbonic anhydrase (CA), exploiting the binding energy of the alkyl/arylsulfonyl moieties with amino acid residues at the entrance of the active site. In contrast to the lead molecule, histamine, the new derivatives possessed higher affinity for three different CA isozymes, as evidenced by compairing the affinity constants of these compounds for isozyme CA II.  相似文献   

9.
1,4-benzoquinone (BQ) and 2,5-dimethyl-1,4-benzoquinone (DMBQ) were studied as inhibitors of jack bean urease in 50 mM phosphate buffer, pH 7.0. The mechanisms of inhibition were evaluated by progress curves studies and steady-state approach to data achieved by preincubation of the enzyme with the inhibitor. The obtained reaction progress curves were time-dependent and characteristic of slow-binding inhibition. The effects of different concentrations of BQ and DMBQ on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. The rapid formation of an initial BQ-urease complex with an inhibition constant of Ki = 0.031 mM was followed by a slow isomerization into the final BQ-urease complex with the overall inhibition constant of Ki* = 4.5 x 10(-5) mM. The respective inhibition constants for DMBQ were Ki = 0.42 mM, Ki* = 1.2 x 10(-3) mM. The rate constants of the inhibitor-urease isomerization indicated that forward processes were rapid in contrast to slow reverse reactions. The overall inhibition constants obtained by the steady-state analysis were found to be 5.1 x 10(-5) mM for BQ and 0.98 x 10(-3) mM for DMBQ. BQ was found to be a much stronger inhibitor of urease than DMBQ. A test, based on reaction with L-cysteine, confirmed the essential role of the sulfhydryl group in the inhibition of urease by BQ and DMBQ.  相似文献   

10.
(R)-Deoxycoformycin (pentostatin), (S)-deoxycoformycin, and 8-ketodeoxycoformycin were compared as inhibitors of calf intestine adenosine deaminase. In contrast to (R)-deoxycoformycin, which had been demonstrated as a tight-binding inhibitor with a dissociation constant of 2.5 X 10(-12) M [Agarwal, R. P., Spector, T., & Parks, R. E., Jr. (1977) Biochem. Pharmacol. 26, 359-367], (S)-deoxycoformycin and 8-ketodeoxycoformycin are slope-linear competitive inhibitors with respect to adenosine. The kinetic constants are 33 microM for inhibition by (S)-deoxycoformycin, 43 microM for 8-ketodeoxycoformycin, and 16 microM for the Km for adenosine. The stereochemistry of carbon 8 of the diazepine ring therefore causes a (1.3 X 10(7]-fold change in the affinity for the enzyme which is specific for the R configuration. This difference is attributed to an induced conformational change which cannot be initiated by the S isomer or the 8-keto analogue of (R)-deoxycoformycin. The studies were complicated by the need to remove traces of tight-binding inhibitor(s) from (S)-deoxycoformycin, since as little as 0.001% of the R isomer causes significant inhibition. The R and S isomers of deoxycoformycin are unstable in neutral or mildly acidic aqueous solutions. Isomerization of the secondary hydroxyl at carbon 8 of the diazepine ring is one of the reactions, resulting in S to R and R to S conversions for deoxycoformycins. Opening of the aglycon is also a major reaction. The tight-binding inhibitor generated from (S)-deoxycoformycin was identified as (R)-deoxycoformycin by high-pressure liquid chromatography, spectroscopy, circular dichroism, and chemical criteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1,4-benzoquinone (BQ) and 2,5-dimethyl-1,4-benzoquinone (DMBQ) were studied as inhibitors of jack bean urease in 50 mM phosphate buffer, pH 7.0. The mechanisms of inhibition were evaluated by progress curves studies and steady-state approach to data achieved by preincubation of the enzyme with the inhibitor. The obtained reaction progress curves were time-dependent and characteristic of slow-binding inhibition. The effects of different concentrations of BQ and DMBQ on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. The rapid formation of an initial BQ-urease complex with an inhibition constant of K i =0.031 mM was followed by a slow isomerization into the final BQ-urease complex with the overall inhibition constant of K*i=4.5 × 10 ?5 mM. The respective inhibition constants for DMBQ were K i =0.42 mM, K*i =1.2 × 10 ?3 mM. The rate constants of the inhibitor-urease isomerization indicated that forward processes were rapid in contrast to slow reverse reactions. The overall inhibition constants obtained by the steady-state analysis were found to be 5.1 × 10 ?5 mM for BQ and 0.98 × 10 ?3 mM for DMBQ. BQ was found to be a much stronger inhibitor of urease than DMBQ. A test, based on reaction with L-cysteine, confirmed the essential role of the sulfhydryl group in the inhibition of urease by BQ and DMBQ.  相似文献   

12.
1. Egg-toxins from Rhipicephalus evertsi evertsi, Boophilus microplus, Boophilus decoloratus and Hyalomma truncatum were found to be inhibitors of trypsin and in two cases also of chymotrypsin. 2. Fast tight-binding and slow-binding inhibition were observed. 3. Immunological identity of the toxins were assessed with Ouchterlony immunodiffusion and ELISA. 4. The protease content of B. decoloratus and Amblyomma hebraeum tick eggs were determined by a linked enzyme assay. 5. The predictive value of the kinetic constants in inferring a possible physiological role was discussed.  相似文献   

13.
Hydroxylated 2,19-methylene-bridged androstenediones were designed as potential mimics of enzyme oxidized intermediates of androstenedione. These compounds exhibited competitive inhibition with low micromolar affinities for aromatase. These inhibitory constants (Ki values) were 10 times greater than the 2,19-methylene-bridged androstenedione constant (Ki = 35–70 nM). However, expansion of the 2,19-carbon bridge to ethylene increased aromatase affinity by 10-fold (Ki = 2 nM). Substitution pf a methylene group with oxygen and sulfur in this expanded bridge resulted in Ki values of 7 and 20 nM, respectively. When the substituent was an NH group, the apparent inhibitory kinetics changed from competitive to uncompetitive. All of these analogs exhibited time-dependent inhibition of aromatase activity following preincubation of the inhibitor with human placental microsomes prior to measuring residual enzyme activity. Part of this inhibition was NADPH cofactor-dependent for the 2,19-methyleneoxy- but not for the 2,19-ethylene-bridged androstenedione. The time-dependent inhibition for these four analogs was very rapid since they exhibited τ50 values, the t1/2 for enzyme inhibition at infinite inhibitor concentration, of 1 to 3 min. These A-ring-bridged androstenedione analogs represent a novel series of potent steroidal aromatase inhibitors. The restrained A-ring bridge containing CH2, O, S, or NH could effectively coordinate with the heme of the P450 aromatase to allow the tight-binding affinities reflected by their nanomolar Ki values.  相似文献   

14.
The affinity constants of recombinant human galectin-1 and galectin-3 for sugars were determined by capillary affinophoresis. The monoliganded affinophore contains p-aminophenyl-beta-lactoside as an affinity ligand in the matrix of succinylglutathione and has three negative charges. An analysis of the mobility change of the lectins caused by the affinophore and its inhibition by neutral sugars allowed, for the first time, a determination of the affinity constants between the binding sites of the lectins and sugars. The relative magnitude of the affinity constants for each of the sugars in terms of dissociation constants found to be consistent with previously reported data on the concentrations of sugars that caused a 50% inhibition (I50) in the binding assay of the lectin to oligosaccharide-immobilized agarose beads but the absolute values of the dissociation constants were considerably smaller than the I50 values. Capillary affinophoresis indicated microheterogeneity of the lectin preparations and enabled the separate analysis of the affinity of each component simultaneously showing the advantage in using a separation method for analysis of bioaffinity.  相似文献   

15.
Phosphoglycolate phosphatases from spinach and human red blood cells show a number of common features not often found in enzymes. Both enzymes are activated more than 50-fold by millimolar concentrations of Cl-. Other inorganic anions and a number of carboxylic acids also activate. Each enzyme has limited substrate specificity yet each hydrolyzes P-glycolate and ethyl-P with the same maximal velocity. L-P-lactate is only a good substrate for the red cell enzyme. With both enzymes initial rate data obtained by varying both the P-glycolate and Cl- give parallel line double reciprocal plots. Similar experiments with ethyl-P as substrate give intersecting lines with both enzymes. The likelihood that both classes of substrates are acting at the same site is strengthened by the results of inhibition studies with alternative substrates and the constancy of inhibition constants for glycolate with all substrates for a given enzyme. For each substrate the experimentally observed variation in V/Km with different activators is small, suggesting that the enzyme has an ordered mechanism with the phosphorylated substrate reacting first. A mechanism that is consistent with all of the data is presented.  相似文献   

16.
The inhibition of steroid 5alpha-reductase (5AR) by Delta(1)-4-azasteroids is characterized by a two-step time-dependent kinetic mechanism where inhibitor combines with enzyme in a fast equilibrium, defined by the inhibition constant K(i), to form an initial reversible enzyme-inhibitor complex, which subsequently undergoes a time-dependent chemical rearrangement, defined by the rate constant k(3), leading to the formation of an apparently irreversible, tight-binding enzyme-inhibitor complex (Tian, G., Mook, R. A., Jr., Moss, M. L., and Frye, S. V. (1995) Biochemistry 34, 13453-13459). A detailed kinetic analysis of this process with a series of Delta(1)-4-azasteroids having different C-17 substituents was performed to understand the relationships between the rate of time-dependent inhibition and the affinity of the time-dependent inhibitors for the enzyme. A linear correlation was observed between ln(1/K(i)), which is proportional to the ligand binding energy for the formation of the enzyme-inhibitor complex, and ln(1/(k(3)/K(i))), which is proportional to the activation energy for the inhibition reaction under the second order reaction condition, which leads to the formation of the irreversible, tight-binding enzyme-inhibitor complex. The coefficient of the correlation was -0.88 +/- 0.07 for type 1 5AR and -1.0 +/- 0.2 for type 2 5AR. In comparison, there was no obvious correlation between ln(1/K(i)) and ln(1/k(3)), which is proportional to the activation energy of the second, time-dependent step of the inhibition reaction. These data are consistent with a model where ligand binding energies provided at C-17 of Delta(1)-4-azasteroids is fully expressed to lower the activation energy of k(3)/K(i) with little perturbation of the energy barrier of the second, time-dependent step.  相似文献   

17.
GK (glucokinase) is an enzyme central to glucose metabolism that displays positive co-operativity to substrate glucose. Small-molecule GKAs (GK activators) modulate GK catalytic activity and glucose affinity and are currently being pursued as a treatment for Type 2 diabetes. GK progress curves monitoring product formation are linear up to 1 mM glucose, but biphasic at 5 mM, with the transition from the lower initial velocity to the higher steady-state velocity being described by the rate constant kact. In the presence of a liver-specific GKA (compound A), progress curves at 1 mM glucose are similar to those at 5 mM, reflecting activation of GK by compound A. We show that GKRP (GK regulatory protein) is a slow tight-binding inhibitor of GK. Analysis of progress curves indicate that this inhibition is time dependent, with apparent initial and final Ki values being 113 and 12.8 nM respectively. When GK is pre-incubated with glucose and compound A, the inhibition observed by GKRP is time dependent, but independent of GKRP concentration, reflecting the GKA-controlled transition between closed and open GK conformations. These data are supported by cell-based imaging data from primary rat hepatocytes. This work characterizes the modulation of GK by a novel GKA that may enable the design of new and improved GKAs.  相似文献   

18.
A B Shenvi 《Biochemistry》1986,25(6):1286-1291
alpha-Aminoboronic acids and their derivatives have been synthesized as stable white solids. These compounds are effective inhibitors of human enkephalin degrading aminopeptidase, microsomal leucine aminopeptidase (EC 3.4.11.2), and cytosolic leucine aminopeptidase (EC 3.4.11.1) at micro- to nanomolar concentrations. The inhibition of cytosolic leucine aminopeptidase has been studied in some detail. Kinetic data correspond to the mechanism for biphasic slow-binding inhibition: E + I in equilibrium E.I in equilibrium E.I*, in which a rapid initial binding is followed by a slow transformation to a stable enzyme inhibitor complex. The initial and final binding constants are dependent on the nature of the side chain at the alpha-carbon atom but are independent of the protecting group on the boronic acid moiety and follow the trend for the hydrolysis of the corresponding amino acid amides. The first-order rate constant for the transformation of E.I to E.I* is similar for all four compounds studied. These data suggest that the slow-binding step represents the formation of tetrahedral boronate species from trigonal boronic acid.  相似文献   

19.
Steady state initial velocity studies were carried out to determine the kinetic mechanism of human liver aldehyde dehydrogenase. Intersecting double reciprocal plots obtained in the absence of inhibitors demonstrated that the dehydrogenase reaction proceeded by sequential addition of both substrates prior to release of products. Dead end inhibition patterns obtained with coenzyme and substrate analogues (e.g. thionicotinamide-AD+ and chloral hydrate) indicated that NAD+ and aldehyde can bind in random fashion. The patterns of inhibition by the product NADH and of substrate inhibition by glyceraldehyde were also consistent with this mechanism. However, comparisons between kinetic constants associated with the dehydrogenase and esterase activities of this enzyme suggested that most of the dehydrogenase reaction flux proceeds via formation of an initial binary NAD+-enzyme complex over a wide range of substrate and coenzyme concentrations.  相似文献   

20.
NvCI is a novel exogenous proteinaceous inhibitor of metallocarboxypeptidases from the marine snail Nerita versicolor. The complex between human carboxypeptidase A4 and NvCI has been crystallized and determined at 1.7 Å resolution. The NvCI structure defines a distinctive protein fold basically composed of a two-stranded antiparallel β-sheet connected by three loops and the inhibitory C-terminal tail and stabilized by three disulfide bridges. NvCI is a tight-binding inhibitor that interacts with the active site of the enzyme in a substrate-like manner. NvCI displays an extended and novel interface with human carboxypeptidase A4, responsible for inhibitory constants in the picomolar range for some members of the M14A subfamily of carboxypeptidases. This makes NvCI the strongest inhibitor reported so far for this family. The structural homology displayed by the C-terminal tails of different carboxypeptidase inhibitors represents a relevant example of convergent evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号