首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Zhao HF  Wang X  Zhang GJ 《FEBS letters》2005,579(6):1551-1556
Lysosomal disintegration is a crucial event for living cells, but mechanisms for the event are still unclear. In this study, we established that the cytosolic extracts could enhance lysosomal osmotic sensitivity and osmotically destabilize the lysosomes. The cytosol also caused the lysosomes to become more swollen in the hypotonic sucrose medium. The results indicate that the cytosol induced an osmotic shock to the lysosomes and an influx of water into the organelle. Since the effects of cytosol on the lysosomes could be abolished by O-tricyclo[5.2.1.0(2,6)]dec-9-yl dithiocarbonate potassium salt (D609), a specific inhibitor of cytosolic phospholipase C (PLC), the PLC might play an important role in the lysosomal osmotic destabilization. The activity of cytosolic PLC and the extent of enzyme latency loss of the cytosol-treated lysosomes exhibited a similar biphasic dependence on the cytosolic Ca2+ concentration. In addition, the cytosol did not osmotically destabilize the lysosomes until the cytosolic calcium ions rose above 100 nM. It suggests that the destabilization effect of cytosol on the lysosomes is Ca(2+)-dependent.  相似文献   

2.
Lysosomal disintegration is critical for the organelle functions and cellular viability. In this study, we established that guanosine 5′-[γ-thio]triphosphate (GTP-γ-S)-activated cytosol of rat hepatocytes could increase lysosomal permeability to both potassium ions and protons and osmotically destabilize the lysosomes via K+/H+ exchange. These results were obtained through measurements of lysosomal β-hexosaminidase-free activity, membrane potential and intralysosomal pH. Assays of phospholipase C (PLC) activity show that cytosolic PLC was activated upon addition of GTP-γ-S to the cytosol. The effects of cytosol on the lysosomes could be abolished by D609, an inhibitor of PLC, but not by the inhibitors of phospholipase A2. The cytosol-treated lysosomes disintegrated markedly in hypotonic sucrose medium, reflecting that the lysosomal osmotic sensitivity increased. Microscopic observations showed that the lysosomes became more swollen in hypotonic sucrose medium. This indicates that the cytosol treatment induced osmotic shock to the lysosomes and an influx of water into the organelle. Xiang Wang and Li-Li Wang contributed equally to this work.  相似文献   

3.
In this study, we investigated the mechanism of PLA(2)-induced lysosomal destabilization. Through the measurements of lysosomal beta-hexosaminidase free activity, their membrane potential, the intra-lysosomal pH and the lysosomal latency loss in hypotonic sucrose medium, we established that PLA(2) could increase the lysosomal membrane permeability to both potassium ions and protons. The enzyme could also enhance the organelle osmotic sensitivity. The increases in the lysosomal ion permeability promoted influx of potassium ions into the lysosomes via K(+)/H(+) exchange. The resulted osmotic imbalance across the lysosomal membranes osmotically destabilized the lysosomes. In addition, the enhancement of the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in the osmotic stress. The results explain how PLA(2) destabilized the lysosomes.  相似文献   

4.
Lysosomal destabilization is a critical event not only for the organelle but also for living cells. However, what factors can affect lysosomal stability is not fully studied. In this work, the effects of phosphatidic acid (PA) on the lysosomal integrity were investigated. Through the measurements of lysosomal beta-hexosaminidase free activity, intralysosomal pH, leakage of lysosomal protons and lysosomal latency loss in hypotonic sucrose medium, we established that PA could increase the lysosomal permeability to K+ and H+, and enhance the lysosomal osmotic sensitivity. Treatment of lysosomes with PA promoted entry of K+ into the organelle via K+/H+ exchange, which could produce osmotic stresses and osmotically destabilize the lysosomes. In addition, PA-induced increase in the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shocks. The results suggest that PA may play a role in the lysosomal destabilization.  相似文献   

5.
Lysosomal destabilization is critical for the organelle and living cells. Phospholipase A2 (PLA2) was shown to be able to destabilize lysosomes under some conditions. By what mechanism the enzyme affects lysosomal stability is not fully studied. In this study, we investigated the effects of lysophosphatidylcholine (lysoPC), a PLA2-produced lipid metabolite, on lysosomal ion permeability, osmotic sensitivity and stability. By measuring lysosomal β-hexosaminidase free activity, membrane potential, proton leakage and their enzyme latency loss in hypotonic sucrose medium, we established that lysoPC could increase the lysosomal permeability to both potassium ions and protons and enhance lysosomal osmotic sensitivity. These changes in lysosomal membrane properties promoted entry of potassium ions into lysosomes via K+/H+ exchange. The resultant osmotic imbalance across the membranes led to losses of lysosomal integrity. The enhancement of lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shock. These results suggest that lysoPC may play a key role in PLA2-induced lysosomal destabilization.  相似文献   

6.
Y Moriyama  M Maeda  M Futai 《FEBS letters》1992,302(1):18-20
Change of the internal pH of isolated lysosomes was measured with fluorescein isothiocyanate-dextran. In buffer of pH 7.0, isolated lysosomes had an acidic pH of about 5.5, which decreased to pH 5.2 on addition of ATP. Addition of bafilomycin inhibited the acidification by H(+)-ATPase and resulted in an increase of the internal pH to 5.5 due to passive diffusion of protons across the lysosomal membrane. However, no further alkalization was observed. The acidic pH (pH 5.5) of isolated lysosomes could be maintained for at least 48 h in the absence of ATP, but increased gradually to pH 5.9-6.4 upon incubation with monovalent cations (K+ or Na+), amines, or ionophores. These results suggest that a non-proton pump factor (possibly Donnan equilibrium) is involved in maintaining the acidic pH of isolated lysosomes.  相似文献   

7.
In this study, we investigated the effects of arachidonic acid, a PLA2-produced lipid metabolite, on the lysosomal permeability, osmotic sensitivity and stability. Through the measurements of lysosomal β-hexosaminidase free activity, membrane potential, intralysosomal pH, and lysosomal latency loss in hypotonic sucrose medium, we established that arachidonic acid could increase the lysosomal permeability to both potassium ions and protons, and enhance the lysosomal osmotic sensitivity. As a result, the fatty-acid-promoted entry of potassium ions into the lysosomes via K+/H+ exchange, which could produce osmotic imbalance across their membranes and osmotically destabilize the lysosomes. In addition, the enhancement of lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shock. The results suggest that arachidonic acid may play a role in the lysosomal destabilization.  相似文献   

8.
Three subcellular fractions enriched in lysosomal enzyme activities have been isolated recently from human cultured fibroblasts with Percoll gradients: the dense lysosomes (DL), light lysosomes (LL), and light membranous vesicles (LM). They were shown to have different morphological, cytochemical, biochemical, and immunological properties. We now report on the dramatic but different effects of a primary amine, NH4Cl, on these subfractions. The lysosomes, as detected with a specific ultrastructural cytochemical stain for the lysosomal enzyme, arylsulfatase A, were swollen significantly in all these fractions, increasing their volumes by 64% (DL), 53% (LL), and 95% (LM), respectively. When arylsulfatase A enzyme activity was monitored, about half of the DL content was diverted to the LL. However, when newly synthesized arylsulfatase A enzyme protein was monitored with metabolic labeling and immunoprecipitation, about 80% of the enzyme protein was depleted from both the DL and LL. In contrast, neither the enzyme activity nor the newly synthesized enzyme protein of arylsulfatase A was greatly altered in the LM fraction by the treatment. Since primary amines caused newly synthesized lysosomal enzymes to diverge from the lysosomal route to a secretory pathway, it was deduced that (i) the LM fraction corresponded to a prelysosomal compartment whose lysosomal enzyme content was not affected by the amine and was thus proximal to the point of diversion between the secretory and lysosomal pathways; (ii) the LL and DL fractions were distal to the point of diversion since both fractions were depleted of their newly synthesized lysosomal enzyme; and (iii) the sorting of newly synthesized lysosomal enzyme may be different from that of the preexisting pool of the same enzyme since the LL fraction was depleted of its newly synthesized enzyme protein while accumulating excessive enzyme activity.  相似文献   

9.
Since lysosomes are prone to osmotic lysis, we have examined the correlation between their physical state and sensitivity to osmotic challenge, using agents which modify membrane fluidity. The latency loss of beta-hexosaminidase after an incubation in hypotonic sucrose medium was followed under different conditions of membrane fluidity, recorded by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene. Increasing fluidity of the lysosomal membranes with benzyl alcohol (BA) and greater rigidity caused by cholesteryl hemisuccinate (CHS) increased and decreased the enzyme latency loss, respectively. The effects of BA and CHS treatments on osmotic sensitivity were reversible subsequently by reciprocal treatments of the lysosomes with CHS and BA, respectively. The results indicate that the physical state of the membrane does indeed affect lysosomal osmotic stability.  相似文献   

10.
1) An activator protein necessary for the enzymic hydrolysis of cerebroside sulphate could be partially purified from unfractionated rat liver. This activator, which is similar to that of human origin, proved to be a heat-stable, non-dialyzable, low molecular weight protein with an isoelectric point of 4.1. Its activity could be destroyed by pronase. 2) For elucidation of the subcellular localization of the activator, rat liver was fractionated by differential centrifugation. The intracellular distribution of the cerebroside sulphatase activator was compared to the distribution patterns of marker enzymes for different cell organelles and found to coincide with the lysosomal arylsulphatase, thus indicating a lysosomal localization. 3) This was confirmed using highly purified secondary, i.e. iron-loaded, lysosomes. After disruption by osmotic shock, these organelles hydrolyzed cerebroside sulphate when incubations were performed under physiological conditions with endogenous as well as exogenous sulphatase A as enzyme. 4) After subfractionation of the disrupted secondary lysosomes into membrane and lysosol fractions by high speed centrifugation, it was found that the activator protein was exclusively associated with the lysosol, whereas the acid hydrolases were distributed differently between the two fractions. 5) The lysosol was further fractionated by semi-preparative electrophoresis on polyacrylamide gels. Two protein fractions were obtained: a high molecular weight fraction, containing the activator-free acid hydrolases, and a low molecular weight fraction, containing the enzyme-free activator of cerebroside sulphatase. 6) The significance of these findings for the hydrolysis of sphingolipids in the lysosomes is discussed.  相似文献   

11.
1. Lysosome-rich fractions were obtained from foetal liver tissues as early as 35 days uterine age. Foetal lysosomes showed the same ;structure-linked latency' and acid hydrolytic potentiality characteristic of their adult counterparts. 2. The osmotic stability of lysosome-rich fraction from foetal guinea-pig liver tissue was greater than that of the corresponding adult lysosome fractions, p-nitrophenyl-phosphatase being used as marker enzyme. 3. The observation was confirmed by using beta-glycerophosphatase and phenolphthalein beta-glucuronidase as alternative marker enzymes. p-Nitrophenyl phosphate and beta-glycerophosphate appear to act as substrates for the same enzyme. 4. By using p-nitrophenylphosphatase activity measurements it was shown that the osmotic stability of foetal lysosomal fractions decreased with increasing foetal age, but at no time achieved the degree of osmotic instability characteristic of adult lysosomal fractions. 5. The correlation of these findings with the intracellular environment of lysosomes is discussed.  相似文献   

12.
We have previously shown that oxidized low-density lipoprotein (LDL) induces damage to the macrophage lysosomal membranes, with ensuing leakage of lysosomal contents and macrophage cell death. Cholesterol oxidation products (ChOx) have been reported to be the major cytotoxic components of oxidized LDL/LDL- and also to stimulate cholesterol accumulation in vascular cells. In the present study, we characterized the initial events during macrophage damage induced by cholesterol oxidation products (ChOx). Within 24 h of exposure, ChOx caused lysosomal destabilization, release to the cytosol of the lysosomal marker-enzyme cathepsin D, apoptosis, and postapoptotic necrosis. Enhanced autophagocytosis and chromatin margination was found 12 h after the exposure to ChOx, whereas apoptosis and postapoptotic necrosis was pronounced 24 and 48 h after the exposure. Some lysosomal vacuoles were then filled with degraded cellular organelles, indicating phagocytosis of apoptotic bodies by surviving cells. Because caspase-3 activation was detected in the ChOx-exposed cells, lysosomal destabilization may associate with the leakage of lysosomal enzymes, and activation of the caspase cascade. MnSOD mRNA levels were markedly increased after 24 h of exposure to ChOx, suggesting associated induction of mitochondrial protection repair or turnover. We conclude that ChOx-induced damage to lysosomes and mitochondria are sequelae to the cascade of oxysterol cytotoxic events. The early disruption of lysosomes induced by ChOx, with resultant autophagocytosis may be a critical event in apoptosis and/or necrosis of macrophages/foam cells during the development of atherosclerotic lesions.  相似文献   

13.
《Autophagy》2013,9(4):542-547
To facilitate the purification of rat liver autophagosomes, isolated rat hepatocytes are first incubated for 2 h at 37°C with vinblastine, which induces autophagosome accumulation by blocking the fusion of these organelles with endosomes and lysosomes. The hepatocytes are then electrodisrupted and homogenized, and the various cellular organelles sequentially removed by subcellular fractionation. A brief incubation of the homogenate with the cathepsin C substrate, glycyl-phenylalanine-naphthylamide (GPN), causes rapid osmotic disruption of the lysosomes due to intralysosomal accumulation of GPN cleavage products. Nuclei are removed by differential centrifugation, and the postnuclear supernatant subsequently fractionated on a two-step Nycodenz density gradient. Autophagosomes are recovered in an intermediate density fraction, free from cytosol and mitochondria. The autophagosomes are finally separated from the membranes and vesicles of the endoplasmic reticulum, Golgi, endosomes, etc. by sieving through a density gradient of colloidal silica particles (Percoll). The final preparation contains about 95% autophagosomes and 5% amphisomes according to morphological and biochemical criteria.  相似文献   

14.
Wang X  Zhao HF  Zhang GJ 《Biochimie》2006,88(7):913-922
Lysosomal disintegration may cause apoptosis, necrosis and some diseases. However, mechanisms for these events are still unclear. In this study, we measured lysosomal beta-hexosaminidase free activity, membrane potential and intralysosomal pH. The results revealed that the cytosolic extracts of rat hepatocytes could increase the lysosomal permeability to both potassium ions and protons, and osmotically destabilize lysosomes via K(+)/H(+) exchange. The effects of cytosol on lysosomes could be completely abolished by D609, which inhibited both phospholipase C and sphingomyelinase, and partly prevented by sphingomyelinase inhibitor Ara-AMP, but not by the inhibitors of PLA(2). Moreover, purified phospholipase C could destabilize the lysosomes while phospholipase A(2) and phospholipase D did not produce such effects. The cytosolic phospholipases hydrolyzed lysosomal membrane phospholipids by 50%, which could be prevented by D609. Disintegration of the cytosol-treated lysosomes biphasically depended on the cytosolic [Ca(2+)]. The cytosol did not disintegrate lysosomes below 100 nM or above 10 muM cytosolic [Ca(2+)], but markedly destabilized lysosomes at about 340 nM [Ca(2+)]. The results suggest that cytosolic phospholipase C and sphingomyelinase may be responsible for the alterations in lysosomal stability by increasing the ion permeability.  相似文献   

15.
Open thyroid follicles were prepared by mechanical disruption of pig thyroid fragments through a metal sieve. This procedure allowed preparation of thyroid-cell material depleted of colloid thyroglobulin. Open thyroid follicles were used to prepared a crude particulate fraction, which contained lysosomes, mitochondria and endoplasmic reticulum. These organelles were subfractionated by isopycnic centrifugation on iso-osmotic Percoll gradients. A lysosomal peak was identified by its content of acid hydrolases: acid phosphatase, cathepsin D, beta-galactosidase and beta-glucuronidase. The lysosomal peak was well separated from mitochondria and endoplasmic reticulum. The lysosomal peak, from which Percoll was removed by centrifugation, was taken as the purified lysosome fraction (L). Lysosomes of fraction L were purified 45-55-fold (as compared with the homogenate) and contained about 5% of the total thyroid acid hydrolase activities. Electron microscopy showed that fraction L was composed of an approx. 90% pure population of lysosomes, with an average diameter of 220 nm. Acid hydrolase activities were almost completely (80-90%) released by an osmotic-pressure-dependent lysis. Thyroglobulin was identified by polyacrylamide-gel electrophoresis as a soluble component of the lysosome fraction. In conclusion, a 50-fold purification of pig thyroid lysosomes was achieved by using a new tissue-disruption procedure and isopycnic centrifugation on Percoll gradient. The presence of thyroglobulin indicates that the lysosome population is probably composed of primary and secondary lysosomes. Isolated thyroid lysosomes should serve as an interesting model to study the reactions whereby thyroid hormones are generated from thyroglobulin and released into the thyroid cells.  相似文献   

16.
Interleukin 1beta (IL-1beta), a secretory protein lacking a signal peptide, does not follow the classical endoplasmic reticulum-to-Golgi pathway of secretion. Here we provide the evidence for a "leaderless" secretory route that uses regulated exocytosis of preterminal endocytic vesicles to transport cytosolic IL-1beta out of the cell. Indeed, although most of the IL-1beta precursor (proIL-1beta) localizes in the cytosol of activated human monocytes, a fraction is contained within vesicles that cofractionate with late endosomes and early lysosomes on Percoll density gradients and display ultrastructural features and markers typical of these organelles. The observation of organelles positive for both IL-1beta and the endolysosomal hydrolase cathepsin D or for both IL-1beta and the lysosomal marker Lamp-1 further suggests that they belong to the preterminal endocytic compartment. In addition, similarly to lysosomal hydrolases, secretion of IL-1beta is induced by acidotropic drugs. Treatment of monocytes with the sulfonylurea glibenclamide inhibits both IL-1beta secretion and vesicular accumulation, suggesting that this drug prevents the translocation of proIL-1beta from the cytosol into the vesicles. A high concentration of extracellular ATP and hypotonic medium increase secretion of IL-1beta but deplete the vesicular proIL-1beta content, indicating that exocytosis of proIL-1beta-containing vesicles is regulated by ATP and osmotic conditions.  相似文献   

17.
The administration of cephaloridine to rats caused a decrease in the excretion of acid phosphatase into the urine. The antibiotic itself had no effect on urinary acid phosphatase and inhibitors or proteolytic enzymes were not present in the urine from treated rats. Cephaloridine may therefore be stabilizing the lysosomal membrane in vivo and experiments with isolated lysosomes confirm this hypothesis. The lysosomal integrity was followed by measuring the acid phosphatase activity and the light scattering properties of the particles. A good correlation was obtained between these parameters in the case of thermal disruption and progesterone induced lysis of the lysosomes and low concentrations of cephaloridine (0.1-1.0 mmol/1) protected the lysosomes against this form of damage.  相似文献   

18.
A structural hallmark of lysosomes is heterogeneity of their contents. We describe a method for isolation of particulate materials from human placental lysosomes. After a methionine methyl ester-induced disruption of lysosomes and two density gradient centrifugations we obtained a homogeneous membrane fraction and another one enriched in particulate inclusions. The latter exhibited a yellow-brown coloration and contained bodies lacking a delimiting membrane, which were characterised by a granular pattern and high electron density. The lipofuscin-like inclusion materials were rich in tripeptidyl peptidase I, beta-glucuronidase, acid ceramidase and apolipoprotein D and contained proteins originating from diverse subcellular localisations. Here we show that human term placenta contains lipofuscin-like lysosomal inclusions, a phenomenon usually associated with senescence in postmitotic cells. These findings imply that a simple pelleting of a lysosomal lysate is not appropriate for the isolation of lysosomal membranes, as the inclusions tend to be sedimented with the membranes.  相似文献   

19.
1. The effects of sucrose and KCl on the loss of latency of lysosomal enzymes caused by incubation at 37 degrees C, pH 7.4, were examined by using Triton-filled lysosomes from rat liver and two fractions from livers of rats not injected with Triton. 2. After incubation, the percentage free activity of lysosomal enzymes was measured before and after cooling to 0 degrees C in order to determine the amount of latency lost at 37 degrees C without cooling and the additional amount lost on cooling the incubated lysosomes to 0 degrees C. 3. The latency that is lost without cooling is first decreased and then increased by increasing the osmotic strength of the incubation medium with KCl, or with sucrose in the presence of KCl. However, if the osmotic strength is increased with sucrose alone, loss of latency is decreased up to 0.25M-sucrose, but is increased only slightly at higher sucrose concentrations. Apparently the lysosome is permeated by hyperosmolar KCl but not by sucrose during incubation. 4. If the osmotic strength of the assay medium is increased with KCl, the loss of latency caused by incubation for 60 min in hyperosmolar KCl is repressed. Thus it appears that a KCl-permeated lysosome can be obtained which is relatively stable until exposure to lower osmolarities. 5. The loss of latency caused by cooling incubated lysosomes to 0 degrees C is largely eliminated if the osmotic strength of the medium in which the lysosomes are cooled is raised sufficiently with either sucrose or KCl. 6. Osmotic-fragility curves were obtained after incubation for 1 and 60 min at iso-osmoticity (0.2M-KCl or 0.25 M-sucrose). Although little loss of latency occurs at iso-osmoticity, lysosomes incubated for 60 min display greatly increased fragility on exposure to hypo-osmolar KCl, hypo-osmolar sucrose or hyperosmolar KCl. 7. It is suggested that permeability to KCl at 37 degrees C and the increase in fragility on exposure to hypo-osmolar conditions are both consequences of injury, probably from enzymic action, sustained by the lysosomal membrane during incubation at 37 degrees C.  相似文献   

20.
Administration of tryptophan or hydrocortisone to rats caused a several-fold increase in tryptophan-2,3-dioxygenase activity in the liver. Highly purified lysosomes were isolated from livers of tryptophan- or hydrocortisone-treated animals as well as the control rats. Immunoblotting of lysosomal proteins with anti-tryptophan-2,3-dioxygenase showed 48 kDa band, corresponding to the subunit molecular weight of the enzyme. The relative amount of the immuno-reactive substance in the lysosomes from hydrocortisone-treated rats was 3 times higher than the control while the value in the lysosomes from tryptophan-treated rats was essentially the same as in the control. These results indicate that administration of tryptophan renders cytosolic tryptophan-2,3-dioxygenase less vulnerable to lysosomal uptake and causes an accumulation of the enzyme in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号