首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Computer modeling has become a valuable component of studies of carbohydrate three-dimensional structures and their relationship to function and properties. In this paper we examine the methods required for conformational modeling of carbohydrates, and we present a series of tools that have been developed to this end. These tools can be integrated into three-dimensional real-time molecular modeling software. A data base of pre-optimized carbohydrate fragments has been established to be used further in the construction of much more complex molecules. In addition we describe some possible uses of a data base of three dimensional structures of the disaccharide fragments present in the glycan moiety ofN-glycoprotein. A molecular mechanical force field appropriate for the conformational analysis of oligosaccharides has been derived by the addition of new parameters to the Tripos force field and is compatible with protein simulations. The new parametrization has been assessed in three stages of increasing complexity: computations of potential energy surfaces, conformational refinement of relevant oligosaccharides, modeling at the atomic level of a protein/carbohydrate complex.  相似文献   

2.
Abstract

Carbohydrates serve as structural components and energy sources of cells. More interestingly, however, these biomolecules are involved in a variety of molecular recognition processes in intercellular communication and signal transduction such as cell adhesion, differentiation, development and regulation. For these reasons, great interest has arisen in carbohydrate-based pharmaceuticals and on the development of techniques for the analysis and synthesis of oligosaccharides. In this respect, enzymes involved in carbohydrates hydrolysis and modification are increasingly being utilised for the bioconversion of sugars, for the synthesis of oligosaccharides with potential application, and for the characterisation of carbohydrate compounds of unknown structure.

In this review, the enzymology and the applications of three glycosyl hydrolases from the archaeon Sulfolobus solfataricus are described. In particular, we focus on the enzymological properties of β-glycosidase, an α-xylosidase, and an α-fucosidase; their exploitation in oligosaccharides synthesis will also be discussed.  相似文献   

3.
Mammalian cell surfaces are all covered with bioactive oligosaccharides which play an important role in molecular recognition events such as immune recognition, cell-cell communication and initiation of microbial pathogenesis. Consequently, bioactive oligosaccharides have been recognized as a medicinally relevant class of biomolecules for which the interest is growing. For the preparation of complex and highly pure oligosaccharides, methods based on the application of glycosyltransferases are currently recognized as being the most effective. The present paper reviews the potential of glycosyltransferases as synthetic tools in oligosaccharide synthesis. Reaction mechanisms and selected characteristics of these enzymes are described in relation to the stereochemistry of the transfer reaction and the requirements of sugar nucleotide donors. For the application of glycosyltransferases, accepted substrate profiles are summarized and the whole-cell approach versus isolated enzyme methodology is compared. Sialyltransferase-catalyzed syntheses of gangliosides and other sialylated oligosaccharides are described in more detail in view of the prominent role of these compounds in biological recognition.  相似文献   

4.
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.  相似文献   

5.
Tumor-associated angiogenesis is a complex process that involves the interplay among several molecular players such as cell-surface heparan sulfate proteoglycans, vascular endothelial growth factors and their cognate receptors. PI-88, a highly sulfonated oligosaccharide, has been shown to have potent anti-angiogenic activity and is currently in clinical trials. However, one of the major drawbacks of large oligosaccharides such as PI-88 is that their synthesis often requires numerous complex synthetic steps. In this study, several novel polysulfonated small molecule carbohydrate mimetics, which can easily be synthesized in fewer steps, are identified as promising inhibitors of angiogenesis in an in vitro tube formation assay.  相似文献   

6.
The past year has seen some major advances in the area of carbohydrate synthesis using chemical methods. Progress in all areas of synthetic methodology, including new protecting groups and coupling methods, has been reported. A number of complex carbohydrate structures have been prepared using known, as well as new, methods. The goal to allow nonspecialists access to defined carbohydrate structures for biochemical, biophysical and biological studies has drawn closer by the introduction of two approaches towards synthesis automation. A one-pot glycosylation strategy utilized computer-assisted synthesis planning and the first solid-phase automated synthesizer was introduced very recently.  相似文献   

7.
Koeller KM  Wong CH 《Glycobiology》2000,10(11):1157-1169
The ultimate goal in complex carbohydrate synthesis is to develop synthetic tools which are simple and easily accessible to glycobiologists. This review will describe methods which have the potential to reach this goal, with particular focus on enzymatic and computer-based one-pot approaches for the preparation of complex carbohydrates and glycoconjugates.  相似文献   

8.
The glycoprotein nature and antigenicity of a fungal D-glucosyltransferase   总被引:1,自引:0,他引:1  
D-Glucosyltransferase (EC 2.4.1.24) from Aspergillus niger has been prepared in pure form by chromatography on DEAE-cellulose. The enzyme transfers D-glucosyl units from maltose and other alpha-linked D-glucosyl oligosaccharides to glucosyl co-substrates resulting in the synthesis of new types of oligosaccharides. The glucosyltransferase has been found to be a glycoprotein containing 20% of carbohydrate consisting of mannose, glucose, and galactose. The carbohydrate residues are attached as either single units or as short oligosaccharide chains by O-glycosyl linkages to the serine and threonine residues of the protein. Antibodies directed against glucosyltransferase have been induced in animals by appropriate immunization regimes. These antibodies combine with the carbohydrate components of the enzyme and, therefore, the carbohydrate residues are the immunodeterminant groups of the glucosyltransferase.  相似文献   

9.
There is high current interest in developing synthetic routes to oligosaccharides involved in glycoconjugates. Significant attention has been focused on the application of glycosidase-catalyzed transglycosylation for practical synthesis of oligosaccharides. The enzymatic synthesis has become more practical by the use of several glycosidases available in sufficient quantities. This review describes convenient syntheses of di- and trisaccharide units, Which are related to molecular recognition, by using regioselective trans-galactosylation, trans-N-acetylglucosaminylation, transfucosylation, and transmannosylation. The region-selectivity could be controlled to some extent by using the following techniques: (1) varying enzymes, (2) organic co-solvent system, (3) the configuration of the existing glycosidic linkage of the acceptor and (4) inclusion complex of acceptor glycoside with cyclodextrin. Furthermore, glycopolymers carrying a series of disacchariues containing β-D-galactosyl residues were synthesized and used as a model in oligosaccharide-lectin interaction analysis. These water-soluble glycopolymers were shown to be useful as probes of carbohydrate recognition.  相似文献   

10.
王玥  叶新山 《生命科学》2011,(6):592-597
作为生物大分子之一,糖链的研究还没有像蛋白质和核酸那样深入。现阶段糖链的获得仍然存在很大的挑战,阻碍了糖生物学的发展。鉴于通过分离手段得到所需的糖链很困难,酶法合成糖链亦存在着诸多问题,因此目前化学方法合成糖链是最佳的选择。对近年来糖链的化学合成所取得的最新进展进行简要的介绍,主要包括一釜合成、固相合成和标签辅助的合成三个方面。  相似文献   

11.
Transdisciplinary approaches involving areas such as material design, nanotechnology, chemistry, and immunology have to be utilized to rationally design efficacious vaccines carriers. Nanoparticle-based platforms can prolong the persistence of vaccine antigens, which could improve vaccine immunogenicity1. Several biodegradable polymers have been studied as vaccine delivery vehicles1; in particular, polyanhydride particles have demonstrated the ability to provide sustained release of stable protein antigens and to activate antigen presenting cells and modulate immune responses2-12.The molecular design of these vaccine carriers needs to integrate the rational selection of polymer properties as well as the incorporation of appropriate targeting agents. High throughput automated fabrication of targeting ligands and functionalized particles is a powerful tool that will enhance the ability to study a wide range of properties and will lead to the design of reproducible vaccine delivery devices.The addition of targeting ligands capable of being recognized by specific receptors on immune cells has been shown to modulate and tailor immune responses10,11,13 C-type lectin receptors (CLRs) are pattern recognition receptors (PRRs) that recognize carbohydrates present on the surface of pathogens. The stimulation of immune cells via CLRs allows for enhanced internalization of antigen and subsequent presentation for further T cell activation14,15. Therefore, carbohydrate molecules play an important role in the study of immune responses; however, the use of these biomolecules often suffers from the lack of availability of structurally well-defined and pure carbohydrates. An automation platform based on iterative solution-phase reactions can enable rapid and controlled synthesis of these synthetically challenging molecules using significantly lower building block quantities than traditional solid-phase methods16,17.Herein we report a protocol for the automated solution-phase synthesis of oligosaccharides such as mannose-based targeting ligands with fluorous solid-phase extraction for intermediate purification. After development of automated methods to make the carbohydrate-based targeting agent, we describe methods for their attachment on the surface of polyanhydride nanoparticles employing an automated robotic set up operated by LabVIEW as previously described10. Surface functionalization with carbohydrates has shown efficacy in targeting CLRs10,11 and increasing the throughput of the fabrication method to unearth the complexities associated with a multi-parametric system will be of great value (Figure 1a).  相似文献   

12.
Our purpose is to develop an efficient synthetic method of obtaining oligosaccharide unit in sufficient amounts to study functions of glycans. Many exoglycosidases have been used as tools for the oligosaccharide synthesis. In contrast, a limited number of reports are available on the utilization of endoglycosidases. We describe herewith the efficient synthetic method of useful oligosaccharides and derivatives as biomaterials utilizing lysozyme, cellulase, and lacto-N-biosidase-mediated transglycosylations.  相似文献   

13.
The development of efficient, fast, flexible and general synthetic routes to glycopolymers is an ongoing challenge and much progress has been made in recent years. Chemical coupling methods have become increasingly sophisticated to fine-tune reactivity of reagents by fortuitous choices of anomeric activating group and protecting groups. As a result, oligosaccharide synthesis has become more predictable and reliable even to the extent that first examples of saccharide library syntheses in solution and on the solid phase have been published. In biology, the repertoire of biocatalysts that can be used for glycoside synthesis is ever-increasing, and enzyme-catalysed glycosylation steps have been successfully incorporated into synthetic strategies.  相似文献   

14.
Nanoparticles are the subject of numerous papers and reports and are full of promises for electronic, optical, magnetic and biomedical applications. Although metallic nanoparticles have been functionalized with peptides, proteins and DNA during the last 20 years, carbohydrates have not been used with this purpose until 2001. Since the first synthesis of gold nanoparticles functionalized with carbohydrates (glyconanoparticles) was reported, the number of published articles has considerably increased. This article reviews progress in the development of nanoparticles functionalized with biological relevant oligosaccharides. The glyconanoparticles constitute a good bio-mimetic model of carbohydrate presentation at the cell surface, and maybe, excellent tools for Glycobiology, Biomedicine and Material Science investigations.  相似文献   

15.
Naturally occurring glycopeptides and glycoproteins usually contain more than one glycosylation site, and the structure of the carbohydrate attached is often different from site to site. Therefore, synthetic methods for preparing peptides and proteins that are glycosylated at multiple sites, possibly with different carbohydrate structures, are needed. Here, we report a chemo-enzymatic approach for accomplishing this. Complex-type oligosaccharides were introduced to the calcitonin derivatives that contained two N-acetyl-D-glucosamine (GlcNAc) residues at different sites by treatment with Mucor hiemalis endo-beta-N-acetylglucosaminidase. Using this enzymatic transglycosylation reaction, three glycopeptides were produced, a calcitonin derivative with the same complex-type carbohydrate at two sites, and two calcitonin derivatives each with one complex-type carbohydrate and one GlcNAc. Starting from the derivatives with one complex-type carbohydrate and one GlcNAc, a high-mannose-type oligosaccharide was successfully transferred to the remaining GlcNAc using another endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae. Thus, we were able to obtain glycopeptides containing not only two complex-type carbohydrates, but also both complex and high-mannose-type oligosaccharides in a single molecule. Using the resultant glycosylated calcitonin derivatives, the effects of di-N-glycosylation on the structure and the activity of calcitonin were studied. The effect appeared to be predictable from the results of mono-N-glycosylated calcitonin derivatives.  相似文献   

16.
Beal J  Lu T  Weiss R 《PloS one》2011,6(8):e22490

Background

The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry.

Methodology/Principal Findings

To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks.

Conclusions/Significance

Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.  相似文献   

17.
The current status of synthetic carbohydrate chemistry for the provision of biologically active oligosaccharides is summarized. Examples are given to demonstrate that synthetic strategy and methodology are now sufficiently developed that carbohydrate chains containing 2-6 sugar residues can be synthesized with reasonable predictability. Such syntheses, however, remain extremely laborious, taking on average 7 weeks per monosaccharide residue for a trained individual to complete. The use of glycosyltransferases can dramatically speed up this process for the provision of small (mg) quantities of test compounds. It is proposed, and supported by examples, that the most rapid and efficient manner of preparing such quantities may be to chemically synthesize small di- or trisaccharide primers and elaborate these to the required complex oligosaccharides enzymatically.  相似文献   

18.
Neoglycoconjugates are useful tools to study carbohydrate/protein interactions. In order to discover new lectins, to define their fine specificity or to study their intracellular trafficking, there is a need for neoglycoconjugates containing complex oligosaccharides. We recently set up a simple way to transform native oligosaccharides into glycosynthons. The present paper describes i[emsp4 ]) the synthesis of such glycosynthons starting with sialylated oligosides, ii[emsp4 ]) the preparation of sialylated neoglycoproteins and iii[emsp4 ]) their binding to sialic acid-specific lectins assessed by surface plasmon resonance experiments.  相似文献   

19.
The fundamental role of glycoconjugates in many biological processes is now well appreciated and has intensified the development of innovative and improved synthetic strategies. All areas of synthetic methodology have seen major advances and many complex, highly branched carbohydrates and glycoproteins have been prepared using solution- and/or solid-phase approaches. The development of an automated oligosaccharide synthesizer provides rapid access to biologically relevant compounds. These chemical approaches help to produce sufficient quantities of defined oligosaccharides for biological studies. Synthetic chemistry also supports an improved understanding of glycobiology and will eventually result in the discovery of new therapeutics.  相似文献   

20.
The technology of glycopeptide synthesis has recently developed into a fully mature science capable of creating diverse glycopeptides of biological interest, even in combinatorial displays. This has allowed biochemists to investigate substrate specificity in the biosynthetic processing and immunology of various protein glycoforms. The construction of all the mucin core structures and a varietyof cancer-related glycopeptides has facilitated detailed analysis of the interaction between MHC-bound glycopeptides and T cell receptors. Novel dendritic neoglycopeptide ligands have been shown to demonstrate high affinity for carbohydrate receptors and these interactions are highly dendrimer specific. Large complex N-linked oligosaccharides have been introduced into glycopeptides using synthetic or chemoenzymatic procedures, both methods affording pure glycopeptides corresponding to a single glycoform in preparative quantities. The improved availability of glycosyl transferases has led to increased use of chemoenzymatic synthesis. Chemical ligation has been introduced as a method of attaching glycans to peptide templates. Combinatorial synthesis and the analysis of resin-bound glycopeptide libraries have been successfully carried out by applying the ladder synthesis principle. Direct quantitative glycosylation of peptide templates on solid phase has paved the way for the synthesis of templated glycopeptide mixtures as libraries of libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号