首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

2.
We previously reported that serotonergic activity was reduced in the ventromedial hypothalamic nucleus (VMN) of obese vs. lean male Zucker rats. To verify that this reduction was associated with genotype rather than gender, we measured monoamines and their major metabolites in hypothalamic nuclei of ll-week-old female lean (Fa/Fb) and obese (fa/fb) Zucker rats. In addition, since the thermic response to cold is reported to differ between lean and obese rats, some rats were also exposed to 9° or 22° C for 2h to determine if cold exposure altered hypothalamic monoaminergic activity. As in males, levels of 5-hydroxyindoleacetic acid [5-HIAA; major metabolite of serotonin (5-HT)] and the ratio of 5-HIANS-HT were lower in the VMN of obese vs. lean females (P = 0.008, 0.001, respectively). S-HIANS-HT was also reduced in the paraventricular (PVN) and suprachiasmatic nuclei (SCN) of the obese compared to the lean females. Cold exposure significantly stimulated brown fat mitochondria1 GDP binding in lean but not obese rats. Similarly, levels of norepinephrine, dopamine (DA), 5-HIAA, and 5-HT in the PVN, and 5-HIAA in the SCN increased in cold-exposed lean but not obese rats. In contrast, VMN and preoptic 3,4-dihydroxyphenylacetic acid (DOPAC; major metabolite of DA) increased in the cold-exposed obese but not lean animals. We conclude that: (1) the blunted peripheral response to cold in obese vs. lean Zucker rats is accompanied by altered hypothalamic monoaminergic activity, the physiological role of which needs further evaluation; and 2) depressed VMN serotonergic activity is associated with the obese genotype (fa/fa) rather than gender and as such may contribute to the reduced sympathetic and enhanced parasympathetic outflow from the VMN .  相似文献   

3.
A method has been developed for the measurement of plasma concentrations of Beta-cell tropin (BCT), which is a potent insulinotropic and lipogenic peptide secreted by the pituitary. The method was employed to compare plasma Beta-cell tropin concentrations between lean and genetically obese (ob/ob) mice and between lean and genetically obese (fa/fa) Zucker rats. The plasma concentration in lean mice was 0.17 +/- 0.02 (5)nmole/l (mean +/- SEM, n = 5), while that in obese (ob/ob) mice was significantly higher, being 2.88 +/- 1.13 (5)nmole/l. The plasma BCT concentration in Zucker rats was 0.14 +/- 0.02 (15)nmole/l, while that in obese Zucker (fa/fa) rats was significantly higher, being 1.69 +/- 0.72 (16)nmole/l. These results explain previously observed differences in the Beta-cell tropin-like biological activity in plasma from lean and obese animals, and support the hypothesis that the peptide has a role in the development of hyperinsulinaemia and obesity.  相似文献   

4.
The obese (fa/fa) Zucker rat shows an impaired sympathetic tone which is accompanied by an altered thermogenesis and changes in both lipid and carbohydrate metabolism. In this work, we have investigated the regulatory effects of epinephrine on the rate of gluconeogenesis from a mixture of [(14)C]lactate/pyruvate, in hepatocytes isolated from obese (fa/fa) rats and their lean (Fa/-) littermates. Epinephrine caused a dose-dependent stimulation of the rate of [(14)C]glucose formation in both obese and lean rat hepatocytes, the maximal rates being five- and twofold higher than the corresponding basal values (0.50 +/- 0.06 and 1.96 +/- 0.15 micromol of lactate converted to glucose/g of cell x 20 min, respectively). No significant differences were found between the calculated half-maximal effective concentrations (EC(50)) for epinephrine in obese and lean rat liver cells. The stimulation of gluconeogenesis by epinephrine was accompanied by a decrease in the cellular concentration of fructose 2,6-bisphosphate, and an inactivation of both pyruvate kinase and 6-phosphofructo 2-kinase, to similar extents in both types of hepatocytes. Epinephrine also significantly raised the hepatocyte content of cyclic AMP, with about a twofold increase at a saturating concentration of the catecholamine (1 microM), in both lean and obese rat liver cells. However, at suboptimal concentrations of epinephrine, the rise in cyclic AMP levels was significantly less marked in obese than in lean rat hepatocytes. Nevertheless, no significant differences were found in either the affinity or the number of beta-adrenergic receptors, in radioligand binding studies carried out in liver plasma membranes obtained from obese and lean Zucker rats. In conclusion, compared to the corresponding basal values, the response of gluconeogenesis from lactate to the stimulatory effect of epinephrine is higher in obese (fa/fa) than in lean (Fa/-) Zucker rat hepatocytes, with no significant differences in the calculated EC(50) values for this hormone. This occurs in spite of an apparent decreased sensitivity of the adenylate cyclase system to the stimulatory effect of epinephrine in obese rat liver cells.  相似文献   

5.
To clarify the role of acyl-CoA synthetase in development of obesity, the mRNA levels and activities were studied in Zucker fatty rats (fa/fa). In Zucker fatty rats compared with their lean littermates, marked enhancement of ACS were observed in adipose tissues. Obese/lean rats ratio of ACS activity and mRNA in abdominal subcutaneous fat (3.3- and 3.9-fold, respectively) were greater than in mesenteric fat (2.0- and 2.2-fold). The enhancement of ACS activity and mRNA in the liver of fatty rats (1.2- and 1.8-fold) were less than those in the adipose tissues. There were no enhancement of ACS activities and mRNA levels in heart tissue of the obese rats. LPL mRNA levels were also enhanced in adipose tissue of fatty rats and obese/lean ratio of LPL mRNA was also higher in abdominal subcutaneous fat than mesenteric fat (6.2- vs 3.1-fold). The larger obese/lean rats ratio of LPL and ACS parameters in abdominal subcutaneous fat than mesenteric fat may be related to the observation that the increase of subcutaneous fat weight was larger than that of mesenteric fat weight in fatty rats (21.1- vs 4.9-fold). Integrated enhancement of LPL and ACS gene expression in adipose tissue may play an important role in the development of obesity.  相似文献   

6.
Adenylate cyclase activity was determined in membranes of liver, muscle, white adipose tissue, and brown adipose tissue (BAT) of lean (Fa/) and obese (fa/fa) Zucker rats. Responses were monitored following beta-adrenergic receptor stimulation and addition of GTP, GTP gamma S, or forskolin. beta-Adrenergic responses in liver, white adipose tissue, and BAT were lower in obese than in lean animals. No such difference was observed in muscle membranes. Production of cAMP after addition of guanine nucleotides was lower in liver and white adipose tissue membranes from obese rats compared with their lean littermates. Synthesis of cAMP in muscle membranes of obese animals after addition of GTP was either not different, or slightly higher, than that observed in muscle membranes from lean animals. Furthermore, production of cAMP after forskolin addition to muscle membranes of obese rats was significantly higher than that observed from lean rats under the same conditions. Interestingly, BAT membranes of obese rats were significantly more sensitive to guanine nucleotide activation than those of lean animals. The results confirm recent findings indicating inferior function of G proteins in liver plasma membranes of obese Zucker rats, and extend this observation to adipose tissue. The present results further suggest that the "nonreceptor" components (e.g., G proteins) responsible for the activation of adenylate cyclase in BAT membranes of obese rats are more responsive to stimulation than those of lean animals. Such sensitivity may be related to and perhaps compensate for the reduced thermogenic activity in the obese Zucker rat during the development of obesity.  相似文献   

7.
TSE, ELIZABETH O, FRANCINE M GREGOIRE, BRIGITTE REUSENS, CLAUDE REMACLE, JOSEPH J HOET, PATRICIA R JOHNSON, JUDITH S STERN. Changes of islet size and islet size distribution resulting from protein malnutrition in lean (Fa/Fa) and obese (fa/fa) Zucker rats. Potential alterations in islet size and islet size distribution resulting from protein malnutrition were studied in lean (Fa/Fa) and obese (fa/fa) Zucker rats. The purpose was to investigate whether the distribution of enlarged islets in obese rats was altered by low-protein feeding. Four-week-old, male, lean and obese Zucker rats were fed either a diet containing 20% (w/w) protein (control diet) or a diet containing 5% (w/w) protein (low-protein diet) for 3 weeks. Pancreata were dissected at autopsy and immunostained for insulin. Islet size and distribution were determined by morphometric analysis. Body-weight gain, food intake, and serum insulin and glucose were also measured. After 3 weeks on the diets, serum insulin was significantly lower in both lean (-75%) and obese (-54%) rats fed low protein compared with that in controls. However, obese rats were still hyperinsulinemic compared with lean rats. Protein malnutrition resulted in a shift in distribution of islets to smaller size both in lean and in obese rats, with an increase in the population of small islets (100 μm2) and a decrease in the population of large islets (>20,000 μ;m2). In lean and obese rats fed low protein, β-cell weight was significantly lower, B cell volume fraction tended to decrease, and islet number per section area was significantly elevated when compared with controls. Taken together, these results show that protein deficiency alters the endocrine pancreas in both lean and obese Zucker rats. Although the decrease in islet size and the shift in distribution to smaller islets most likely contribute to the decrease in serum insulin concentration, these changes appear insufficient to normalize hyperinsulinemia in the obese Zucker rat.  相似文献   

8.
Leptin acts as a satiety factor within the central nervous system by binding to its receptor located in the hypothalamus. A missense mutation of the leptin receptor induces hyperphagia and obesity in the obese Zucker fa/fa rat. Since the CNS is an important target of leptin action, we hypothesized that leptin gene transfer into the lateral cerebral ventricle could efficiently lead to inhibition of food intake and reduction of body weight in obese fa/fa rats as well as in lean animals. A single intracerebroventricular injection of an adenoviral vector containing a cDNA encoding leptin resulted in the expression of leptin in the ependymal cells lining the ventricle and the secretion of leptin into the cerebrospinal fluid (CSF). During the first week after injection, when high concentrations of leptin were produced in the CSF, the reducing effects of leptin on food intake and body weight were comparable in lean and in obese fa/fa rats. The subsequent decline in CSF leptin levels, that was similar in lean and obese fa/fa rats, resulted in the faster resumption of food intake and body weight gain in obese than in lean animals, confirming a reduced sensitivity to leptin in the obese group. The results of this study show that leptin gene delivery into the cerebral ventricles allows for the production of elevated leptin concentrations in CSF, and they support the hypothesis that the impaired sensitivity to leptin may be overcome in obese fa/fa rats.  相似文献   

9.
Alterations in both calcitonin (CT) secretion and plasma calcium were recently described in adult obese Zucker rats. We have investigated the CT biosynthetic activity of thyroid glands in 30-day-old obese Zucker rats (fa/fa), and their controls (Lean). Plasma calcium level was significantly increased (+0.6 mg/dl) in obese animals, but plasma phosphate was unchanged. Plasma CT levels measured by radioimmunoassay (RIA) were significantly decreased in fatty (0.50 +/- 0.03 vs 0.68 +/- 0.03 ng/ml in Leans; P less than 0.001), but thyroidal hormone content was not different between Lean and fatty rats (68.7 +/- 5.1 in Leans vs 60.5 +/- 3.6 ng/gland in fatty rats). mRNA was extracted from 10 thyroids, and translated in a rabbit reticulocyte lysate (NEN) in the presence of [35S]methionine. After polyacrylamide gel electrophoresis, specific immunoprecipitates were autoradiographed and quantified by integration. A 50% decrease in translatable CT mRNA was observed in fatty rats. In basal conditions, the biosynthetic activity of C cells in obese rats correlates with the secretion rate of the hormone in the face of unchanged thyroidal CT contents.  相似文献   

10.
Mechanisms of regulation of plasma leptin in lean and genetically obese animals are not completely understood. In particular a relation has been proposed between energy metabolism and leptin. However, it is not clear how energy expenditure and leptin are related under exercise in lean and obese animals. To clarify these aspects we investigated lean and genetically obese (fa/fa) Zucker rats undergoing a single bout (30 min) of swimming and measured several biochemical and hormonal parameters of energy metabolism and leptin changes throughout the study. Moreover ob-gene expression in adipose tissue was also measured. Our results showed that plasma leptin is decreased by 30% at the end of exercise in lean animals while resulting unaffected in obese animals. Leptin changes in lean rats are concomitant with the peak of NEFA and glycerol release from adipose tissue rather than with the reduction of plasma insulin. Ob-gene expression in adipose tissue was markedly increased in fa/fa compared to lean rats, but was not modified by exercise both in lean and obese animals. In conclusion our data show that leptin changes during exercise are related to lipolytic events in adipose tissue and support a link between leptin and energy expenditure.  相似文献   

11.
Pathophysiological and pharmacological concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the cerebrospinal fluid (CSF) induce anorexia in normal rats. Obesity in humans and rodents is associated with increased TNF-α messenger RNA and protein levels in various cell types. This suggests that obese individuals may have differential regulation of cytokine production and dissimilar responsiveness to cytokines. In the present study, we investigated the effects of the intracerebroventricular (ICV) microinfusion of TNF-α (50, 100, and 500 ng/rat), IL-1β (1.0, 4.0, and 8.0 ng), and TNF-α (100 ng) plus IL-1β (1.0 ng) on obese (fa/fa) and lean (Fa/Fa) Zucker rats. The results show that: TNF-α and IL-1β, and the concomitant administration of TNF-a and IL-ip decreased the short-term (4 hours), nighttime (12 hours), and total daily food intakes in obese and lean rats; IL-1β was more potent relative to TNF-α; obese rats showed greater responsiveness to IL-1β: 8.0 ng IL-1β, for example, decreased the 12-hour food intake by 52% in obese and 22% in lean rats. On the other hand, obese and lean rats did not exhibit a significantly different responsiveness to the anorexia induced by 50,100, or 500 ng TNF-α at the 4-hour period; and the concomitant ICV administration of TNF-α and IL-1β induced anorexia with additive (4-hour period) or synergistic (12-hour and 24-hour periods) effects in obese rats. The effect of TNF-α plus IL-1β in lean rats was greater than additive for the 12-hour and 24-hour periods. The difference in suppression of total daily food intake by TNF-α plus IL-1β in obese (-43%) versus lean (-23%) rats was significantly different (p<0.01). The results show that obese (fa/fa) and lean (Fa/Fa) Zucker rats have differential responsiveness to the ICV microinfusion of two different classes of cytokines.  相似文献   

12.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

13.
The concentration of the 'uncoupling protein' in brown adipose tissue mitochondria has been measured in lean and obese (ob/ob) mice and Zucker (fa/fa) rats at different ages using a specific radioimmunoassay. During the suckling period the concentration of the protein was similar in normal and mutant animals of both types, despite the decrease in mitochondrial GDP binding observed in the obese. The concentration of uncoupling protein was, however, decreased in adult ob/ob mice and adult Zucker rats compared with their respective lean siblings, in parallel with the decrease in GDP binding. It is concluded that there is a 'masked', or inactive, form of uncoupling protein in young ob/ob mice and fa/fa rats.  相似文献   

14.
The hypothalamic serotonergic system is involved in the regulation of food ingestion and energy metabolism. Since disturbances of both energy intake and expenditure can contribute to obesity, the objective of the present study was to evaluate the serotonergic response stimulated by food ingestion in two different models of obesity: the hyperphagic Zucker and the hypophagic and hypometabolic, monosodium glutamate (MSG) obese Wistar rat. For this we used microdialysis to examine the release of 5-hydroxytryptamine (serotonin, 5HT) and 5-hydroxyindoleacetic acid (5HIAA) in the lateral hypothalamus. Daily intake of MSG-obese rats was 40% lower while that of Zucker obese rats was 60% higher than that of the respective lean controls. In overnight-fasted animals, 20-min microdialysate samples were collected before (basal release) and during a 2-h period of access to a balanced palatable food mash. The animals began to eat during the first 20 min of food access, and food consumption was similar among the four groups in all six individual 20-min periods recorded. Ingestion of food increased 5HT release in all groups. In MSG-obese and lean Wistar rats, 5HT levels were similarly elevated during the whole experimental period. In the Zucker strain, 5HT increments of basal release tended to be higher in obese than in lean rats at 20 and 40 min, and a significantly higher increment was observed at 60 min after food access (40 and 135% for lean and obese, respectively). The area under the curve relating serotonin levels to the 120 min of food availability was significantly higher in Zucker obese (246.7 +/- 23.3) than MSG-obese (152.7 +/- 13.4), lean Wistar (151.9 +/- 11.1), and lean Zucker (173.5 +/- 24.0) rats. The present observation, of a food-induced serotonin release in the lateral hypothalamus of lean Wistar and Zucker rats, evidences that 5HT in the lateral hypothalamus is important in the normal response to feeding. In obese animals, the serotonin response was similar to (in the hypophagic-hypometabolic MSG model) or even higher than (in the hyperphagic Zucker model) that seen in the respective lean controls. This result indicates that the energy homeostasis disturbances of both these obesity models may not be ascribed to an impairment of the acute lateral hypothalamic serotonin response to a dietary stimulus.  相似文献   

15.
Recent reports have suggested that the obesity and hyperphagia of the genetically obese Zucker rat may be related to defective insulin action or binding in the hypothalamus. We used quantitative autoradiography to determine if insulin binding is altered in specific hypothalamic nuclei associated with food intake. Insulin binding was measured in the arcuate (ARC), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei of 3–4-month-old lean (Fa/Fa) and genetically obese (fa/fa) Zucker rats. A consistently reproducible 15% increase in the total specific binding of 0.1 nM [125I]-insulin was found in the ARC of the obese genotype. A slight increase in insulin binding in the DMN was also found. No difference in specific insulin binding was found between genotypes in the VMN. Nonlinear least squares analysis of competitive binding studies showed that the Kd of the ARC insulin binding site was 33% higher in the lean rats than in the obese rats, indicating an increased affinity for insulin. No difference in site number (Bmax) was found in the ARC, DMN or VMN, and no evidence was found for reduced insulin binding in the hypothalamus of the obese (fa/fa) genotype. The results suggest that hyperphagia and obesity of the obese (fa/fa) Zucker rat genotype may be associated with increased insulin binding in the arcuate nucleus.  相似文献   

16.
Recent reports have indicated that genetically obese hyperinsulinemic mice (ob/ob) and Zucker rats (fa/fa) compared with their lean controls have elevated levels of pituitary and plasma B-endorphins, opiates that can stimulate insulin secretion. In this study we have measured opiate levels by a radio-receptor assay in gastro-intestinal tissues and pancreas in ob/ob and fa/fa animals and their controls. Ob/ob mice showed significantly higher levels than control mice (+/+) in most gastro-intestinal tissues and pancreas. Levels in fa/fa rats did not differ from their controls. Radioimmunoassay of pancreas for B-endorphins, revealed higher levels in ob/ob vs +/+ mice, while there was no difference in the obese and lean rats. Fasting tended to decrease gastro-intestinal opioids in mice, while B-endorphin levels rose. It is concluded that opiates may play a significant role in the obesity of the ob/ob mouse and that this genetic obesity differs from that in Zucker rats.  相似文献   

17.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

18.
Treatment of intact, 32Pi-labelled hepatocytes from lean Zucker rats with a range of agents including 12-O-tetradecanoyl-phorbol 13-acetate (TPA), vasopressin, and angiotensin II elicited substantial increases in the phosphorylation of the alpha-subunit of the inhibitory G protein of adenylate cyclase (alpha Gi-2). These agonist-induced phosphorylations of alpha Gi-2 were associated with loss of Gi function as assessed by the ability of low concentrations of guanylyl 5'-[beta,gamma imido]triphosphate (p[NH]ppG) to inhibit forskolin-stimulated adenylate cyclase activity. Hepatocytes from obese Zucker rats displayed a resistance to both agonist-induced phosphorylation of alpha Gi-2 and to p[NH]ppG-mediated inhibition of adenylate cyclase. The basal level of alpha Gi-2 phosphorylation in hepatocytes from obese Zucker rats was considerably greater at 1.06 +/- 0.09 mol phosphate/mol alpha Gi-2 than in hepatocytes from lean animals which gave 0.54 +/- 0.09 mol phosphate/mol alpha Gi-2. Incubation with TPA (10 ng/ml, 15 min) approximately doubled the level of phosphorylation of alpha Gi-2 in the hepatocytes from lean animals but had little effect on the phosphorylation of alpha Gi-2 in hepatocytes from obese animals. Incubation of hepatocytes from lean animals with ligands which lead to the phosphorylation of alpha Gi-2 abolished the ability of low concentrations of p[NH]ppG to inhibit adenylate cyclase expressed in isolated membranes. Treatment of hepatocyte plasma membranes from lean but not obese Zucker rats with pure protein kinase C led to the phosphorylation of alpha Gi-2. The resistance to protein-kinase-C-mediated phosphorylation in hepatocyte membranes from obese animals could be overcome by treatment of the membranes with alkaline phosphatase. These results indicate that the defect in guanine-nucleotide-mediated 'Gi function' seen in obese Zucker rats may be due to an inactivating phosphorylation of alpha Gi-2.  相似文献   

19.
The direct effects of dexamethasone exposure on insulin secretion from islets of fa/fa rats and their lean littermates (Fa/?) were compared. After 72 h culture in 1 nM dexamethasone, glucose (27.5 mM)-stimulated insulin secretion over 90 min from islets of lean rats was significantly decreased compared with islets cultured without dexamethasone (12.9 +/- 1.4 vs. 5.7 +/- 1.0% of total islet content, p < 0.05). Higher doses of dexamethasone for 24-48 h culture produced similar effects. For islets of fa/fa rats, the minimum inhibitory concentration of dexamethasone was 10-fold higher, and islets required at least 48 h exposure for inhibitory effects to be observed. Dexamethasone also decreased the insulin response by islets to glybenclamide, indicating that dexamethasone effects were not specific to glucose transport or metabolism. The results suggest that islets of fa/fa rats may be less sensitive to direct inhibitory effects of glucocorticoids on glucose-stimulated insulin release than islets of lean animals.  相似文献   

20.
Compared to its lean litter mate (Fa/--) the Zucker rat (fa/fa) develops obesity without hyperphagia in the first week of lite. It is characterized by adipocyte hypertrophy and higher lipid content in adipose tissue. In vitro utilization as well as in vitro oxidation by diaphragm of palmitic acid was decreased in 1 week old Zucker rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号