首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recombinant human growth hormone (r-hGH) overexpressed in Escherichia coli forms inactive and insoluble aggregates as inclusion bodies in the cytoplasm. The efficient solubilization of inclusion bodies is critical for cost-effective production. Contrary to a previous report, in our production system, the solubilization method by alkaline treatment including 2 M urea was ineffective. Hence various buffers containing different concentrations of urea or guanidine hydrochloride (GnHCl) at neutral and alkaline pH were attempted. Efficient solubilization (about 90%) was observed in 100 mM Tris buffer, pH 8.0, with more than 4 M GnHCl, and at pH 12.5 with more than 2 M GnHCl, but not with about 8 M of urea. The r-hGH solubilized at pH 12.5 containing 2 M GnHCl was refolded by simple dilution and purified by DEAE Sepharose anion-exchange chromatography. The biological activity of the resulting r-hGH was comparable with commercially available r-hGH in in vitro cell proliferation assay using the hGH-dependent cell line.  相似文献   

2.
Growth hormone (GH) enhances the growth rate of aquacultured fish and shellfish, but it is difficult to extract native GH from fish pituitary glands. However, fish recombinant GH (rGH) can be efficiently synthesized by Escherichia coli cells, although it exists in denatured form in inclusion bodies (IB). We studied the solubilization of IB and the renaturation of rGH to help facilitate the production of a large amount of biologically active rGH. A 100-ml sample of rGH-producing E. coli produced 73.43 ± 5.47 mg IB (dry weight, n = 3) after 20 h induction by 1 mM isopropyl β-o-thiogalactopyranoside. Interestingly, if the bacteria were induced by 0.1 mM β-lactose, 95.3 ± 3.43 mg of IB was obtained. The optimal conditions for denaturation and renaturation of rGH were when IB were solubilized in 6 M guanidine hydrochloride and then dialysed against pH 10 dialysis buffer (50 mM ammonium bicarbonate and 2 mM EDTA) containing 100 mM l-arginine, 2 mM oxidized glutathione and 2 mM reduced glutathione for 24 h at 4 °C in a volume ratio of 3 to 500. At least 20% of the denaturated rGH in IB was renatured. Juvenile black sea bream injected with 0.05 μg/g resultant rGH once every 2 weeks exhibited significant increases (P < 0.05) in weight gain (84%) relative to fish in the control group over a 16-week period. This process is an economical and effective way to obtain an active form of rGH biosynthesized by a prokaryotic system. Received: 18 November 1996 / Received revision: 5 March 1997 / Accepted: 7 March 1997  相似文献   

3.
Amongst the various endogenous growth factors, epidermal growth factor (EGF) plays an important role in normal wound healing of tissue such as skin, cornea and gastrointestinal tract. Various studies have proved that supplementing recombinant human EGF (rhEGF) results in significant augmentation of wound healing. In the present work, a high level expression system with poly-arginine sequences was used for the production of recombinant human EGF (rhEGF) as inclusion bodies. The inclusion bodies were solubilized and the protein was refolded by using expanded-bed adsorption chromatography. The renatured protein was digested with appropriate concentration of trypsin and subsequently the digested rhEGF is purified by passing through ion-exchange chromatography (Toyopearl-SP) to obtain a biologically active protein. This process is the shortest process with reduced number of steps of purification, eliminates the usage of preparative reversed phase HPLC (RP-HPLC) for final purification, which is an expensive technique. The purified protein was analyzed by RP-HPLC, showing a purity >99% and size exclusion chromatography profile shows that there are minimal aggregates, with 99% renatured active protein. The purified rhEGF showed a specific activity of 5 × 105 IU/mg protein, in comparison with NIBSC standard (1st International Standard of rDNA-derived EGF, Code 91/530). The process has been successfully adopted at 100 L fermentation scale and the rhEGF based formulation has been commercialized with brand name REGEN D, with excellent clinical results.  相似文献   

4.
The lymphokine human interleukin 4 (IL-4) has been expressed from a plasmid in the cytoplasm of Escherichia coli. Advantage has been taken of insolubility of the human IL-4 in E. coli for rapid purification of this protein in only a few steps. We describe extraction and renaturation procedures which solubilize human IL-4 yielding biologically active protein. The protein was purified to homogeneity by one passage over a gel-filtration column. The refolded human IL-4 was characterized by N-terminal sequence analysis, amino acid analysis and bioassays. The refolded E. coli-derived human IL-4 has biological activity on T and B cells and binds to the human IL-4 receptor, comparable to mammalian expressed human IL-4, indicating that the protein is folded correctly.  相似文献   

5.
Escherichia. coli cells expressing porcine growth hormone were grown in a batch fermentation process. The expression level was estimated to be nearly 40% of the total cellular protein after 2–3 h of induction with 1?mM isopropyl β-d-thiogalactoside. Porcine growth hormone expressed as inclusion bodies was solubilized in 8 M urea. Refolding conditions following a dilution protocol in the presence of β-mercaptoethanol or using a glutathione pair were tested. Reverse phase-HPLC was applied to distinguish oxidized, misfolded and reduced forms of the hormone. A ratio of reduced to oxidized glutathione equal to 2/1 was chosen to avoid the formation of misfolded forms at high protein concentration.  相似文献   

6.
7.
8.
Summary Higher culture pH of 7.6 was shown to be preferable for the inclusion body formation of salmon growth hormone (SGH) inEscherichia coli harboring a recombinant plasmid. High-level formation of SGH inclusion bodies was achieved at 33°C (pH 7.6). Growth inhibition by soluble SGH was also observed.  相似文献   

9.
Recombinant human renin synthesized in Escherichia coli in the form of inclusion bodies has been recovered in a soluble form without the use of denaturing agents. The renin protein in soluble fractions has been confirmed by Western immunoblotting.  相似文献   

10.
Synthesis of two recombinant proteins (human glucagon and human growth hormone) was investigated in fed-batch cultures at high cell concentrations of recombinant Escherichia coli. The glucose-limited growth was achieved without accumulation of metabolic by-products and hence the cellular environment is presumed invariable during growth and recombinant protein synthesis. Via exponential feeding in the two-phase fed-batch operation, the specific cell growth rate was successfully controlled at the desired rates and the fed-batch mode employed is considered appropriate for examining the correlation between the specific growth rate and the efficiency of recombinant product formation in the recombinant E. coli strains. The two recombinant proteins were expressed as fusion proteins and the concentration in the culture broth was increased to 15 g fusion growth hormone l−1 and 7 g fusion glucagon l−1. The fusion growth hormone was initially expressed as soluble protein but seemed to be gradually aggregated into inclusion bodies as the expression level increased, whereas the synthesized fusion glucagon existed as a cytoplasmic soluble protein during the whole induction period. The stressful conditions of cultivation employed (i.e. high-cell-density cultivation at low growth rate) may induce the increased production of various host-derived chaperones and thereby enhance the folding efficiency of synthesized heterologous proteins. The synthesis of the recombinant fusion proteins was strongly growth-dependent and more efficient at a higher specific growth rate. The mechanism linking specific growth rate with recombinant protein productivity is likely to be related to the change in cellular ribosomal content. Received: 27 May 1997 / Received last revision: 31 October 1997 / Accepted: 21 November 1997  相似文献   

11.
Two-dimensional electrophoretic analyses of Escherichia coli cells producing recombinant human growth hormone (Nutropin) in fermentations were conducted. The resulting two-dimensional protein profiles were compared with those of nonproducing (blank) cells. A qualitative comparison was performed to address regulatory issues in the biopharmaceutical industry, and a semiquantitative comparison was performed to reveal information about the physiological state of the cells. The protein spots unique to production fermentation profiles were all related to recombinant human growth hormone (hGH); these included intact hGH, charge variants of hGH, and a proteolytically cleaved form of hGH, as expected. There were no E. coli host cell proteins unique to either the production or blank fermentation profiles. Rather, all detectable differences in E. coli proteins were quantitative in nature. Specifically, the levels of IbpA (inclusion body binding protein A), Ivy (inhibitor of vertebrate lysozyme), and a cleaved form of GroEL (Hsp60 homolog) were higher in hGH production profiles, whereas the levels of GlmU protein and PspA (phage shock protein A) were higher in blank profiles. In general, the high degree of similarity between proteomes for hGH-producing and nonproducing cells suggests that E. coli proteins from a nonproducing (blank) fermentation are appropriate for eliciting antibodies that are then used in immunoassays to measure host cell proteins in samples from production fermentations.  相似文献   

12.
Aggregation of misfolded proteins can reduce the yield in recombinant protein production. The underlying complex processes are additionally influenced by cellular physiology. Nevertheless, a lumped-parameter model of kinetic competition between folding and aggregation was sufficient to track properly the specific concentration of a human protein produced in E. coli and its partitioning into soluble and insoluble cell fractions. Accurate estimation of the protein-specific parameters required informative experiments, which were designed using the Fisher information matrix. The model was employed to calculate the influence of the specific glucose uptake rate in high-cell-density cultivation of E. coli on accumulation and aggregation of the recombinant protein. Despite its simplicity, the model was flexible and unbiased concerning unidentified mechanisms. Assuming an exponentially decreasing production rate, the irreversible aggregation step was found to follow first order kinetics, while assuming a constant production rate with simultaneous degradation, the model predicted transient aggregation only. Implications for strain and process development are discussed.  相似文献   

13.
Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology.  相似文献   

14.
Using the pUBJ10 plasmid containing the modified bovine growth hormone (bGH) cDNA, large production has been attempted in E. coli BL21 strain. The bGH was highly expressed upto the level of 35% of total cell proteins by IPTG induction and temperature shift to 40°C. The recombinant bGH (rbGH) was isolated from inclusion bodies by solubilization in 10 M urea and followed by DEAE-TOYOPEARL 650C ion exchange and Sephadex G-100 column chromatography. The pUBJ10-derived bGH was eluted at 25.28 min similar to the standard bGH (at 25.18 min) by reverse-phase HPLC. The analysis of N-terminal amino acid showed that the mature bGH has glutamic acid as a first amino acid in agreement with DNA sequencing data. The biological activity was indirectly measured by radioreceptor assay and compared with a pituitary-derived bGH.  相似文献   

15.
Periplasmic secretion of human growth hormone by Escherichia coli   总被引:2,自引:0,他引:2  
The gene coding for human growth hormone (hGH) was fused to the coding sequence for the signal peptide of a secreted Escherichia coli protein. STII heat-stable enterotoxin. This hybrid gene was expressed in E. coli. The signal peptide is properly processed and hGH is secreted in to the periplasmic space. In E. coli, some of the material made is proteolytically clipped or deamidated. The effect of culture conditions on the expression and secretion of hGH was studied and several important parameters were identified, including culture temperature and duration, cultivation pH, K+ levels, plasmid structure, and nutrient supplements. Alteration of culture conditions significantly improves the recovery yield and product quality of human growth hormone.  相似文献   

16.
High-level secretion of human growth hormone by Escherichia coli   总被引:11,自引:0,他引:11  
C N Chang  M Rey  B Bochner  H Heyneker  G Gray 《Gene》1987,55(2-3):189-196
  相似文献   

17.
Abstract

Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome p-450 and glutathione substrate catabolic genes, natural or engineered, for the simultaneous remediation of a range of pollutants, such as usually found in contaminated sites, e.g., chlorinated solvent, metals, and nitroaromatics. In addition, biodegradation of many xenobiotics are catalyzed by similar, broad-substrate enzymes, such as cytochrome P-450 monoxygenases, glutathione S-transferases, and fungal peroxidases, that can potentially be used for the treatment of multiple pollutants. Moreover, the introduction of multiple transgenes involved in different phases of the metabolism of xenobiotics in plants, i.e., uptake by roots and the different phases of the green liver model, would allow enhancing both the removal and metabolism of several toxic compounds and could therefore help overcome a major limitation inherent to phytoremediation, i.e., the threat that accumulated toxic compounds would volatilize or otherwise contaminate the food chain. An important barrier to the application of transgenic plants for bioremediation in the field is associated with the true or perceived risk of horizontal gene transfer to related wild or cultivated plants. Therefore, it is likely that the next generation of transgenic plants will involve systems preventing such a transfer, for instance by the introduction of transgenes into chloroplastic DNA or the use of conditional lethality genes (Davison, 2005). Since bacteria naturally exchange plasmids via conjugation, endophytes that gain genes involved in pollutant degradation might not be considered ‘genetically modified’ and may be subject to fewer restrictions in usage.  相似文献   

18.
目的将前期在大肠埃希杆菌中获得表达的A型人呼吸道合胞病毒兰州分离株截短的F1重组蛋白进行纯化和复性,为后期动物免疫制备抗原。方法 37℃诱导重组菌体p ET-42b-F1J/Rossata,诱导完毕后离心收集菌体,高压破碎菌体并收集包涵体后用不同浓度的Triton X-100(细胞裂解液)洗涤包涵体3次。洗涤的包涵体用8 mol/L尿素进行溶解并用镍离子亲和层析方法进行初步纯化,用阳离子交换层析方法对初步纯化蛋白进行最终的纯化。亲和层析纯化蛋白用3种不同的复性液进行了稀释复性。结果 37℃诱导5 000 m L重组菌p ET-42b-F1J/Rossata共收获37 g湿菌体,经过不同浓度Triton X-100洗涤包涵体后纯度可达75%。包涵体用8 mol/L尿素溶解后经镍离子亲和层析纯化纯度约为40%,再用阳离子交换层析介质SP HP进一步纯化样品后纯度可达90%。纯化蛋白以3种不同的复性液都能得到复性,其中复性液3的复性效果相对较好。结论实验中探索了人呼吸道合胞病毒截短F1重组蛋白包涵体的纯化方法及步骤,为后期的蛋白制备及动物免疫奠定了基础。  相似文献   

19.
Eukaryotic proteins expressed inEscherichia coli often accumulate within the cell as insoluble protein aggregates or inclusion bodies. The recovery of structure and activity from inclusion bodies is a complex process, there are no general rules for efficient renaturation. Research into understanding how proteins fold in vivo is giving rise to potentially new refolding methods, for example, using molecular chaperones. In this article we review what is understood about the main three classes of chaperone: the Stress 60, Stress 70, and Stress 90 proteins. We also give an overview of current process strategies for renaturing inclusion bodies, and report the use of novel developments that have enhanced refolding yields.  相似文献   

20.
Human parathyroid hormone (hPTH) is a promising agent in the treatment of osteoporosis. The intact recombinant human parathyroid hormone [rhPTH(1-84)] was prepared in a large scale from Escherichia coli using a soluble fusion protein strategy. With degenerate codons, gene of hPTH(1-84) was synthesized, ligated with pET32a(+) vector, and then expressed in E. coli BL21(DE3) cells. The soluble fusion protein His(6)-thioredoxin-hPTH(1-84) was harvested after purification by immobilized metal affinity chromatography (IMAC). Following enterokinase cleavage, ion-exchange-chromatography (IEC) and size-exclusive-chromatography (SEC) were used, and finally, over 300mg/l intact hPTH(1-84) with high purity up to 99% was obtained. The purified rhPTH(1-84) was confirmed by mass spectrometry and N-terminal/C-terminal amino-acid sequence analysis. Additionally, this product stimulated adenylate cyclase in Rat Osteosarcoma Cell UMR-106 at the same extent as hPTH standards, indicating that the purified rhPTH(1-84) has full biological activity. The efficient procedure for expression and purification of rhPTH(1-84) may be useful for the mass production of this important protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号