首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermolecular histone H4 interactions in core nucleosomes   总被引:1,自引:0,他引:1  
D G Chung  P N Lewis 《Biochemistry》1986,25(8):2048-2054
Chicken histone H4, labeled at methionine-84 with 1-N-pyrenyliodoacetamide, has been incorporated into a nucleosome-like particle with core length DNA and unmodified histones H2A, H2B, and H3. These synthetic nucleosomes exhibit properties very similar to those displayed by native particles and those labeled with other fluors. The emission spectrum of the pyrene-labeled nucleosome was characteristic of excited dimer (excimer) fluorescence, indicating that the single pyrene groups on the two H4 molecules are in close proximity in the reconstituted particle. Histone H4 was also labeled randomly at lysines with a group that contains two pyrene moieties separated by 12 A at most. Incorporation of this histone into nucleosome-like particles provides an excimer standard which does not depend on intermolecular interactions. The properties of the pyrene-containing nucleosome were examined as a function of ionic strength. It was found that the H4-H4 pyrene excimer fluorescence exhibited a cooperative disruption centered at 0.1 M NaCl which preceded increases in accessibility and environment polarity revealed by other fluors attached at the same site.  相似文献   

2.
D G Chung  P N Lewis 《Biochemistry》1985,24(27):8028-8036
Chicken histone H4 labeled at Met-84 with the fluor N-[(acetylamino)ethyl]-8-naphthyl-amine-1-sulfonic acid has been incorporated into a nucleosome which has physical characteristics virtually identical with those of native core nucleosomes. The fluorescence emission and polarization properties of the labeled nucleosome were measured as a function of ionic strength and the binding of high mobility group (HMG) proteins 14 and 17. Also, the accessibility of the fluor to the quenching agent acrylamide was determined. It was found that the fluorescence emission changes in the range 0.1-1000 mM NaCl are rather small and indicate that no major unfolding of the octamer structure occurs around Met-84 on H4 at least. Five or perhaps six discrete states were found in that ionic strength range. Each has a different accessibility to the quenching agent. The range of accessibilities varied from 9 X 10(-7) to 32 X 10(-7) mol-1 s-1 for 0.1-1000 mM NaCl, respectively. Polarization measurements showed that there was little change in the rotational relaxation lifetime of the fluor at ionic strengths less than 50 mM NaCl. Above this value, the rotational relaxation lifetimes decreased from 107 to 25 ns at 600 mM NaCl, indicating a moderately increased rotational freedom for the fluor. It is suggested that the histone octamer changes its degree of compaction in the range 0.1-600 mM NaCl but that no major protein unfolding occurs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The role of the histone pairs H2A,H2B and H3,H4 in the kinetics of core particle formation was investigated by using N-(1-pyrene)maleimide-labeled histone H3. The excimer emission intensity of a DNA-core histone complex prepared by direct mixing of DNA and histones in 0.2 m-NaCl is reduced by half when H2A,H2B is omitted. Fluorescence quenching studies and lifetime measurements indicate that the emission differences are probably due to static quenching. In a correctly folded nucleosome or a DNA-(H3,H4) complex, the two pyrene rings are buried and are held very close. DNA-(H3,H4) can interact with additional copies of H3,H4, but only when two dimers of H2A,H2B are correctly bound is there a specific twofold increase in excimer emission.The kinetics of the reaction of H3,H4 with DNA in 0.2 m-NaCl were followed by measuring the increase in 460 nm fluorescence. The apparent rate constant of the dominant kinetic component is ~ 2 × 10?1 s?1. If histones H2A,H2B are added immediately after the preparation of the DNA-(H3,H4) complex, an increase in excimer fluorescence is observed, with an apparent rate constant of ~ 6 × 10?3 s?1. However, if histones H2A,H2B are added one hour after DNA-(H3,H4) complex formation, there is no increase in excimer fluorescence. These results suggest that an intermediate involving the H3,H4 tetramer is formed first in nucleosome assembly. In the presence of H2A,H2B, this intermediate evolves to the final folded nucleosome, but in the absence of H2A,H2B it rearranges to an unmaturable dead-end complex. Additional experiments show that a very fast transfer of histone pairs (probably H2A,H2B) can take place between partially reconstituted nucleosomes.  相似文献   

4.
SWI-SNF is an ATP-dependent chromatin remodeling complex required for expression of a number of yeast genes. Previous studies have suggested that SWI-SNF action may remove or rearrange the histone H2A-H2B dimers or induce a novel alteration in the histone octamer. Here, we have directly tested these and other models by quantifying the remodeling activity of SWI-SNF on arrays of (H3-H4)(2) tetramers, on nucleosomal arrays reconstituted with disulfide-linked histone H3, and on arrays reconstituted with histone H3 derivatives site-specifically modified at residue 110 with the fluorescent probe acetylethylenediamine-(1,5)-naphthol sulfonate. We find that SWI-SNF can remodel (H3-H4)(2) tetramers, although tetramers are poor substrates for SWI-SNF remodeling compared with nucleosomal arrays. SWI-SNF can also remodel nucleosomal arrays that harbor disulfide-linked (H3-H4)(2) tetramers, indicating that SWI-SNF action does not involve an obligatory disruption of the tetramer. Finally, we find that although the fluorescence emission intensity of acetylethylenediamine-(1,5)-naphthol sulfonate-modified histone H3 is sensitive to octamer structure, SWI-SNF action does not alter fluorescence emission intensity. These data suggest that perturbation of the histone octamer is not a requirement or a consequence of ATP-dependent nucleosome remodeling by SWI-SNF.  相似文献   

5.
Ramesh S  Bharath MM  Chandra NR  Rao MR 《FEBS letters》2006,580(25):5999-6006
A comparison of the globular domain sequences of the somatic H1d and testis-specific H1t revealed a single substitution of lysine 52 in H1d to glutamine 54 in H1t, which is one of the three crucial residues within the second DNA binding site. The globular domains of both histones were modeled using the crystal structure of chicken GH5 as a template and was also docked onto the nucleosome structure. The glutamine residue in histone H1t forms a hydrogen bond with main chain carbonyl of methionine-52 (in H1t) and is spatially oriented away from the nucleosome dyad axis. A consequence of this change was a lower affinity of recombinant histone H1t towards Four-way junction DNA and reconstituted 5S mononucleosomes. When Gln-54 in Histone H1t was mutated to lysine, its binding affinity towards DNA substrates was comparable to that of histone H1d. The differential binding of histones H1d and H1t towards reconstituted mononucleosomes was also reflected in the chromatosome-stop assay.  相似文献   

6.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

7.
alpha-Chymotrypsin was used to probe accessible hydrophobic amino acid residues in nucleosome cores. Small amounts of chymotrypsin rapidly and selectively cleaved at leucine 20 of histone H3. Cleavage at this site caused partial unfolding of the nucleosome core at low ionic strengths indicated by a small decrease in sedimentation coefficient and increase in circular dichroism in the 265-285-nm range. Unfolding did not occur at moderate ionic strengths, probably because of more effective electrolyte screening of residual negative charge on the nucleosome core. More extensive treatment with chymotrypsin partially degraded other core histones in nucleosome cores at similar rates. The primary sites of cleavage were assigned to Leu115 of H2a, Val18 or Gln22 of H2b, and Leu10 plus Leu22 of H4. We conclude that these primary sites of chymotrypsin cleavage of the four core histones lie on or near the nucleosome core surface, while the large number of other hydrophobic histone residues located in more central sequences must be inaccessible. Extensive chymotrypsin treatment yielded a set of "limit" products approximately 80-100 residues long that were similar to the limit products of trypsin digestion. Sedimentation coefficients and circular dichroism spectra of nucleosome cores treated to near limits with chymotrypsin or chymotrypsin followed by trypsin were not consistent with significant unfolding of the proteolyzed cores at moderate ionic strength. These results indicate that the amino-terminal 20-30 residues of H2b, H3, and H4 and the amino- and carboxyl-terminal approximately 12 residues of H2a, in toto, interact weakly if at all with DNA of isolated nucleosome cores. These histone termini stabilize less than two turns and perhaps only one turn on each DNA terminus.  相似文献   

8.
We have found that histone H5 (or H1) induces physiological nucleosome spacings and extensive ordering on some plasmid constructions, but not on others, in a fully defined in vitro system. Plasmid pBR327 containing DNA insertions with lengths close to 300 base-pairs permitted histone H5 to induce a remarkable degree of nucleosome alignment. Seventeen multiples of a unit 210(+/- 4) base-pair repeat, covering the entire plasmid, were detected. Plasmid pBR327, not containing a DNA insert, permitted continuous alignment of only a few nucleosomes. These observations suggest that a necessary requirement in this system for histone H5 (or H1)-induced nucleosome alignment on small (less than 4 kb; 1 kb = 10(3) bases or base-pairs) circular plasmids may be that the total DNA length must be close to an integer multiple of the nucleosome repeat length generated, a type of boundary effect. Consistent with this hypothesis, five deletion constructs of pBR327 (not containing inserts), that spanned 64% of the plasmid, and possessed DNA lengths close to integer multiples of 210 base-pairs, permitted nucleosome alignment by histone H5. We have also found that plasmid length adjustment is not a sufficient condition for nucleosome alignment. For example, plasmids pBR322 and pUC18 did not permit nucleosome alignment when adjusted to near-integer multiples of 210 base-pairs. Also, for pBR327 that contained a length-adjusted deletion in one particular region, appreciable nucleosome alignment no longer occurred. These data suggest that a contiguous approximately 800 base-pair region of pBR327, interrupted in pBR322 and not present in pUC18, can nucleate histone H5-induced nucleosome alignment, which can then spread to adjacent chromatin. Supporting this idea, a positioned five-nucleosome array appears to originate in the required region. Additionally, on a larger (6.9 kb) plasmid construction, the "chromatin organizing region" of pBR327 and adjacent DNA on one side of it exhibited preferred H5-induced nucleosome alignment.  相似文献   

9.
10.
The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.  相似文献   

11.
The interaction of different histone oligomers with nucleosomes has been investigated by using nondenaturing gel electrophoresis. In the presence of 0.2 M NaCl, the addition of the pairs H2A,H2B or H3,H4 or the four core histones to nucleosome core particles produces a decrease in the intensity of the core particle band and the appearance of aggregated material at the top of the gel, indicating that all these histone oligomers are able to associate with nucleosomes. Equivalent results were obtained by using oligonucleosome core particles. Additional electrophoretic results, together with second-dimension analysis of histone composition and fluorescence and solubility studies, indicate that H2A,H2B, H3,H4, and the four core histones can migrate spontaneously from the aggregated nucleosomes containing excess histones to free core DNA. In all cases the estimated yield of histone transfer is very high. Furthermore, the results obtained from electron microscopy, solubility, and supercoiling assays demonstrate the transfer of excess histones from oligonucleosomes to free circular DNA. However, the extent of solubilization obtained in this case is lower than that observed with core DNA as histone acceptor. Our results demonstrate that nucleosome core particles can be formed in 0.2 M NaCl by the following mechanisms: (1) transfer of excess core histones from oligonucleosomes of free DNA, (2) transfer to excess H2A,H2B and H3,H4 associated separately with oligonucleosomes to free DNA, (3) transfer to excess H2A,H2B initially associated with oligonucleosomes to DNA, followed by the reaction of the resulting DNA-(H2A,H2B) complex with oligonucleosomes containing excess H3,H4, and (4) a two-step transfer reaction similar to that indicated in (3), in which excess histones H3,H4 are transferred to DNA before the reaction with oligonucleosomes containing excess H2A,H2B. The possible biological implications of these spontaneous reactions are discussed in the context of the present knowledge of the nucleosome function.  相似文献   

12.
Role of histone tails in nucleosome remodeling by Drosophila NURF.   总被引:6,自引:1,他引:5       下载免费PDF全文
P T Georgel  T Tsukiyama    C Wu 《The EMBO journal》1997,16(15):4717-4726
  相似文献   

13.
In mammalian cells, canonical histone H3 (H3.1) and H3 variant (H3.3) differ by five amino acids and are assembled, along with histone H4, into nucleosomes via distinct nucleosome assembly pathways. H3.1-H4 molecules are assembled by histone chaperone CAF-1 in a replication-coupled process, whereas H3.3-H4 are assembled via HIRA in a replication-independent pathway. Newly synthesized histone H4 is acetylated at lysine 5 and 12 (H4K5,12) by histone acetyltransferase 1 (HAT1). However, it remains unclear whether HAT1 and H4K5,12ac differentially regulate these two nucleosome assembly processes. Here, we show that HAT1 binds and acetylates H4 in H3.1-H4 molecules preferentially over H4 in H3.3-H4. Depletion of Hat1, the catalytic subunit of HAT1 complex, results in reduced H3.1 occupancy at H3.1-enriched genes and reduced association of Importin 4 with H3.1, but not H3.3. Finally, depletion of Hat1 or CAF-1p150 leads to changes in expression of a H3.1-enriched gene. These results indicate that HAT1 differentially impacts nucleosome assembly of H3.1-H4 and H3.3-H4.  相似文献   

14.
15.
The coordinated process of DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3-H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three histone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3-H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3-H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.  相似文献   

16.
D G Chung  P N Lewis 《Biochemistry》1986,25(18):5036-5042
Chicken histone H4, labeled separately at Met-84 with N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid and 5-(iodoacetamido)fluorescein, was reassociated with unlabeled histones H2A, H2B, and H3 and 146 base pairs of DNA to produce fluorescently labeled nucleosomes having physical characteristics virtually the same as those of native core particles. Four types of particles were prepared containing respectively unlabeled H4, dansylated H4, fluoresceinated H4, and a mixture of the two labeled H4 molecules. Quantitative singlet-singlet energy-transfer measurements were carried out to determine changes in the distance between the two Met-84 H4 sites within the same nucleosome following conformational transitions which we have reported earlier. In the ionic strength range 0.1-100 mM NaCl, the distance between these sites is less than 2 nm except at 1 mM. Between 100 and 600 mM monovalent salt the distance separating the donor and acceptor fluors at Met-84 H4 increases to 3.8 nm. The conformational change centered around 200 mM NaCl is cooperative. Our results and those of others indicate that there is little unfolding of the histone octamer, at least around Met-84 H4, in the entire ionic strength range studied. A mechanism involving the rotation of the globular portion of H4 is proposed to account for this transition which occurs at physiological ionic strengths.  相似文献   

17.
18.
The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3–H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three his-tone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3–H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3–H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.Key words: Gen5, Rtt109, chromatin, nucleosome assembly, genome integrity  相似文献   

19.
Chen X  Xiong J  Xu M  Chen S  Zhu B 《EMBO reports》2011,12(3):244-251
Two copies of each core histone exist in every nucleosome; however, it is not known whether both histones within a nucleosome are required to be symmetrically methylated at the same lysine residues. We report that for most lysine methylation states, wild-type histones paired with mutant, unmethylatable histones in mononucleosomes have comparable methylation levels to bulk histones. Our results indicate that symmetrical histone methylation is not required on a global scale. However, wild-type H4 histones paired with unmethylatable H4K20R histones showed reduced levels of H4K20me2 and H4K20me3, suggesting that some fractions of these modifications might exist symmetrically, and enzymes mediating these modifications might, to some extent, favour nucleosome substrates with premethylated H4K20.  相似文献   

20.
We have used the measurements of the histone fluorescence parameters to study the influence of the ionic strength on histone-DNA and histone-histone interactions in reconstructed nucleosomes. The ionic strength increase lead to the two-stage nucleosome dissociation. The dimer H2A-H2B dissociates at the first stage and the tetramer (H3-H4)2 at the second one. The dimer H2A-H2B dissociation from nucleosome is a two-stage process also. The ionic bonds between (H2A-H2B) histone dimer and DNA break at first and then the dissociation of dimer from histone tetramer (H3-H4)2 occurs. According to the proposed model the dissociation accompanying a nucleosome "swelling" and an increase of DNA curvature radius. It was shown that the energy of electrostatic interactions between histone dimer and DNA is sufficiently less than the energy of dimer-tetramer interaction. We propose that the nucleosome DNA ends interact with the dimer and tetramer simultaneously. The calculated number (approximately 30 divided by 40) of ionic bonds between DNA and histone octamer globular part practically coincides with the number of exposed cationic groups on the surface of octamer globular head. On this basis we have assumed that the spatial distribution of these groups is precisely determined, which explains the high evolutionary conservatism of the histone primary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号