首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs)where it is recruited to or near sites of DNA damage. Although little is known about thebiochemical functions of 53BP1, the protein possesses several motifs that are likely important for itsrole as a DNA damage response element. This includes two BRCA1 C-terminal repeats, tandemTudor domains, and a variety of phosphorylation sites. Here we show that a glycine-arginine rich(GAR) stretch of 53BP1 lying upstream of the Tudor motifs is methylated. We demonstrate thatarginine residues within this region are important for asymmetric methylation by the PRMT1methyltransferase. We further show that sequences upstream of the Tudor domains that do notinclude the GAR stretch are sufficient for 53BP1 oligomerization in vivo. Thus, although Tudordomains bind methylated proteins, 53BP1 homo-oligomerization occurs independently of Tudorfunction. Lastly, we find that deficiencies in 53BP1 generate a “hyper-rec” phenotype. Collectively,these data provide new insight into 53BP1, an important component in maintaining genomicstability.  相似文献   

2.
Eukaryotic cells have evolved DNA damage checkpoints in response to genome damage. They delay the cell cycle and activate repair mechanisms. The kinases at the heart of these pathways and the accessory proteins, which localize to DNA lesions and regulate kinase activation, are conserved from yeast to mammals. For Saccharomyces cerevisiae Rad9, a key adaptor protein in DNA damage checkpoint pathways, no clear human ortholog has yet been described in mammals. Rad9, however, shares localized homology with both human BRCA1 and 53BP1 since they all contain tandem C-terminal BRCT (BRCA1 C-terminal) motifs. 53BP1 is also a key mediator in DNA damage signaling required for cell cycle arrest, which has just been reported to possess a tandem Tudor repeat upstream of the BRCT motifs. Here we show that the major globular domain upstream of yeast Rad9 BRCT domains is structurally extremely similar to the Tudor domains recently resolved for 53BP1 and SMN. By expressing several fragments encompassing the Tudor-related motif and characterizing them using various physical methods, we isolated the independently folded unit for yeast Rad9. As in 53BP1, the domain corresponds to the SMN Tudor motif plus the contiguous HCA predicted structure region at the C terminus. These domains may help to further elucidate the structural and functional features of these two proteins and improve knowledge of the proteins involved in DNA damage.  相似文献   

3.
4.
Modification of histone proteins by lysine methylation is a principal chromatin regulatory mechanism (Shi, Y., and Whetstine, J. R. (2007) Mol. Cell 25, 1-14). Recently, lysine methylation has been shown also to play a role in regulating non-histone proteins, including the tumor suppressor protein p53 (Huang, J., and Berger, S. L. (2008) Curr. Opin. Genet. Dev. 18, 152-158). Here, we identify a novel p53 species that is dimethylated at lysine 382 (p53K382me2) and show that the tandem Tudor domain of the DNA damage response mediator 53BP1 acts as an "effector" for this mark. We demonstrate that the 53BP1 tandem Tudor domain recognizes p53K382me2 with a selectivity relative to several other protein lysine methylation sites and saturation states. p53K382me2 levels increase with DNA damage, and recognition of this modification by 53BP1 facilitates an interaction between p53 and 53BP1. The generation of p53K382me2 promotes the accumulation of p53 protein that occurs upon DNA damage, and this increase in p53 levels requires 53BP1. Taken together, our study identifies a novel p53 modification, demonstrates a new effector function for the 53BP1 tandem Tudor domain, and provides insight into how DNA damage signals are transduced to stabilize p53.  相似文献   

5.
The tumor suppressor p53 has two DNA binding domains: a central sequence-specific domain and a C-terminal sequence-independent domain. Here, we show that binding of large but not small DNAs by the C terminus of p53 negatively regulates sequence-specific DNA binding by the central domain. Four previously described mechanisms for activation of specific DNA binding operate by blocking negative regulation. Deletion of the C terminus of p53 activates specific DNA binding only in the presence of large DNA. Three activator molecules (a small nucleic acid, a monoclonal antibody against the p53 C terminus, and a C-terminal peptide of p53) stimulate sequence-specific DNA binding only in the presence of both large DNA and p53 with an intact C terminus. Our findings argue that interactions of the C terminus of p53 with genomic DNA in vivo would prevent p53 binding to specific promoters and that cellular mechanisms to block C-terminal DNA binding would be required.  相似文献   

6.
We identified a minimal domain of human p53 required for the transactivation of a p53 response element in Saccharomyces cerevisiae. This domain contains the central region of p53 sufficient for specific DNA binding, which colocalizes with the region responsible for binding simian virus 40 large T antigen, 53BP1, and 53BP2. Thirty amino acid positions, including natural mutational hot spots (R175, R213, R248, R249, and R273), in the minimal DNA-binding domain were mutated by alanine substitution. Alanine substitutions at positions R213, R248, R249, D281, R282, R283, E286, and N288 affected transactivation but allowed binding to at least one of the three interacting proteins; these amino acids may be involved in amino acid-base pair contacts. Surprisingly, alanine substitution at the mutational hot spot R175 did not affect DNA binding, transactivation, or T-antigen binding, although it nearly eliminated binding to 53BP1 and 53BP2. Mutation of H168 significantly affected only T-antigen binding, and mutation of E285 affected only 53BP1 binding. Thus, we implicate specific residues of p53 in different DNA and protein interactions.  相似文献   

7.
Upon DNA damage, p53-binding protein 1 (53BP1) relocalizes to sites of DNA double-strand breaks and forms discrete nuclear foci, suggesting its role in DNA damage responses. We show that 53BP1 changed its localization from the detergent soluble to insoluble fraction after treatment of cells with x-ray, but not with ultraviolet or hydroxyurea. Either DNase or phosphatase treatment of the insoluble fraction released 53BP1 into the soluble fraction, showing that 53BP1 binds to chromatin in a phosphorylation-dependent manner after X-irradiation of cells. 53BP1 was retained at discrete nuclear foci in X-irradiated cells even after detergent extraction of cells, showing that the chromatin binding of 53BP1 occurs at sites of DNA double-strand breaks. The minimal domain for focus formation was identified by immunofluorescence staining of cells ectopically expressed with 53BP1 deletion mutants. This domain consisted of conserved Tudor and Myb motifs. The Tudor plus Myb domain possessed chromatin binding activity in vivo and bound directly to both double-stranded and single-stranded DNA in vitro. This domain also stimulated end-joining by DNA ligase IV/Xrcc4, but not by T4 DNA ligase in vitro. We conclude that 53BP1 has the potential to participate directly in the repair of DNA double-strand breaks.  相似文献   

8.
The DNA damage response mediators, 53BP1 and MDC1, play a central role in checkpoint activation and DNA repair. Here we establish that human 53BP1 and MDC1 interact directly through the tandem BRCT domain of MDC1 and residues 1288-1409 of 53BP1. Following induction of DNA double strand breaks the interaction is reduced, probably due to competition between gamma-H2AX and 53BP1 for the binding of the tandem BRCT domain of MDC1. Furthermore, the MDC1 binding region of 53BP1 is required for focus formation by 53BP1. During mitosis the interaction between 53BP1 and MDC1 is enhanced. The interaction is augmented in a phospho-dependent manner, and the MDC1 binding region of 53BP1 is phosphorylated in vivo in mitotic cells; therefore, it is probably modulated by cell cycle-regulated kinases. Our results demonstrate that the 53BP1-MDC1 interaction per se is required for the recruitment of 53BP1 to sites of DNA breaks, which is known to be crucial for an efficient activation of the DNA damage response. Moreover, the results presented here suggest that the interaction between 53BP1 and MDC1 plays a role in the regulation of mitosis.  相似文献   

9.
The nonhistone chromosomal protein high-mobility group 1 protein (HMG-1/HMGB1) can serve as an activator of p53 sequence-specific DNA binding (L. Jayaraman, N. C. Moorthy, K. G. Murthy, J. L. Manley, M. Bustin, and C. Prives, Genes Dev. 12:462-472, 1998). HMGB1 is capable of interacting with DNA in a non-sequence-specific manner and causes a significant bend in the DNA helix. Since p53 requires a significant bend in the target site, we examined whether DNA bending by HMGB1 may be involved in its enhancement of p53 sequence-specific binding. Accordingly, a 66-bp oligonucleonucleotide containing a p53 binding site was locked in a bent conformation by ligating its ends to form a microcircle. Indeed, p53 had a dramatically greater affinity for the microcircle than for the linear 66-bp DNA. Moreover, HMGB1 augmented binding to the linear DNA but not to the microcircle, suggesting that HMGB1 works by providing prebent DNA to p53. p53 contains a central core sequence-specific DNA binding region and a C-terminal region that recognizes various forms of DNA non-sequence specifically. The p53 C terminus has also been shown to serve as an autoinhibitor of core-DNA interactions. Remarkably, although the p53 C terminus inhibited p53 binding to the linear DNA, it was required for the increased affinity of p53 for the microcircle. Thus, depending on the DNA structure, the p53 C terminus can serve as a negative or a positive regulator of p53 binding to the same sequence and length of DNA. We propose that both DNA binding domains of p53 cooperate to recognize sequence and structure in genomic DNA and that HMGB1 can help to provide the optimal DNA structure for p53.  相似文献   

10.
The p53-binding protein 1 (53BP1) is rapidly recruited to sites of DNA double-strand breaks and forms characteristics nuclear foci, demonstrating its role in the early events of detection, signaling and repair of damaged DNA. 53BP1 contains a glycine arginine rich (GAR) motif of unknown function within its kinetochore binding domain. Herein, we show that the GAR motif of 53BP1 is arginine methylated by protein arginine methyltransferase 1 (PRMT1), the same methyltransferase that methylates MRE11. 53BP1 contains asymmetric dimethylarginines (aDMA) within cells, as detected with methylarginine-specific antibodies. Amino acid substitution of the arginines within the GAR motif of 53BP1 abrogated binding to single and double-stranded DNA, demonstrating that the GAR motif is required for DNA binding activity of 53BP1. Fibroblast cells treated with methylase inhibitors failed to relocalize 53BP1 to sites of DNA damage and formed few ?-H2AX foci, consistent with our previous data that MRE11 fails to relocalize to DNA damage sites in cells treated with methylase inhibitors. Our findings identify the GAR motif as a region required for 53BP1 DNA binding activity and is the site of methylation by PRMT1.  相似文献   

11.
We have previously reported that wild-type p53 can bind single-stranded (ss) DNA ends and catalyze renaturation of ss complementary DNA molecules. Here we demonstrate that p53 can also bind to internal segments of ss DNA molecules via a binding site (internal DNA site) distinct from the binding site for DNA ends (DNA end site). Using p53 deletion mutants, the internal DNA site was mapped to the central region (residues 99-307), while the DNA end site was mapped to the C-terminal domain (residues 320-393) of the p53 protein. The internal DNA site can be activated by the binding of ss DNA ends to the DNA end site. The C-terminal domain alone was sufficient to catalyze DNA renaturation, although the central domain was also involved in promotion of renaturation by the full-length protein. Our results suggest that the interaction of the C-terminal tail of p53 with ss DNA ends generated by DNA damage in vivo may lead to activation of non-specific ss DNA binding by the central domain of p53.  相似文献   

12.
Lamins A/C have been implicated in DNA damage response pathways. We show that the DNA repair protein 53BP1 is a lamin A/C binding protein. In undamaged human dermal fibroblasts (HDF), 53BP1 is a nucleoskeleton protein. 53BP1 binds to lamins A/C via its Tudor domain, and this is abrogated by DNA damage. Lamins A/C regulate 53BP1 levels and consequently lamin A/C‐null HDF display a 53BP1 null‐like phenotype. Our data favour a model in which lamins A/C maintain a nucleoplasmic pool of 53BP1 in order to facilitate its rapid recruitment to sites of DNA damage and could explain why an absence of lamin A/C accelerates aging.  相似文献   

13.
Human (h)PTIP plays important but poorly understood roles in cellular responses to DNA damage. hPTIP interacts with 53BP1 tumour suppressor but only when 53BP1 is phosphorylated by ATM after DNA damage although the mechanism(s) and significance of the interaction of these two proteins are unclear. Here, we pinpoint a single ATM-phosphorylated residue in 53BP1—Ser25—that is required for binding of 53BP1 to hPTIP. Binding of phospho-Ser25 to hPTIP in vitro and in vivo requires two closely apposed pairs of BRCT domains at the C-terminus of hPTIP and neither pair alone can bind to phospho-Ser25, even though one of these BRCT pairs in isolation can bind to other ATM-phosphorylated epitopes. Mutations in 53BP1 and in hPTIP that prevent the interaction of the two proteins, render cells hypersensitive to DNA damage and weaken ATM signalling. The C-terminal BRCT domains of hPTIP are also required for stable retention of hPTIP at sites of DNA damage but this appears to be independent of binding to 53BP1. Thus, the BRCT domains of hPTIP play important roles in the cellular response to DNA damage.  相似文献   

14.
15.
16.
p53 binds to cisplatin-damaged DNA   总被引:1,自引:0,他引:1  
We have previously shown that bacterially expressed p53 protein or p53 protein isolated from cis-diamminedichloroplatinum II (cisplatin)-damaged cells is capable of binding to double-stranded platinated DNA molecules lacking any p53 DNA binding sites. Here we report using various p53 mutants that two separate domains of p53 protein affect p53 binding to platinated DNA. Mutations within the central core of p53, the domain responsible for sequence-specific DNA binding activity, completely eliminated p53 binding to platinated DNA. Based on competition experiments p53 preferred binding to sequence-specific DNA molecules over platinated DNA molecules. However, p53 binding to platinated DNA molecules was significantly stronger than p53 interactions with DNA molecules lacking damage and a p53 consensus site. Finally, an antibody specific to the C-terminal domain of p53 (pAb421) which activates sequence-specific DNA binding activity inhibited p53 binding to platinated DNA. Taken together, these results suggest that in addition to binding to p53 DNA binding sites, p53 also interacts with cisplatin-damaged DNA molecules.  相似文献   

17.
18.
E6-AP is a 100-kDa cellular protein that mediates the interaction of the human papillomavirus type 16 and 18 E6 proteins with p53. The association of p53 with E6 and E6-AP promotes the specific ubiquitination and subsequent proteolytic degradation of p53 in vitro. We recently isolated a cDNA encoding E6-AP and have now mapped functional domains of E6-AP involved in binding E6, association with p53, and ubiquitination of p53. The E6 binding domain consists of an 18-amino-acid region within the central portion of the molecule. Deletion of these 18 amino acids from E6-AP results in loss of both E6 and p53 binding activities. The region that directs p53 binding spans the E6 binding domain and consists of approximately 500 amino acids. E6-AP sequences in addition to those required for formation of a stable ternary complex with E6 and p53 are necessary to stimulate the ubiquitination of p53. These sequences lie within the C-terminal 84 amino acids of E6-AP. The entire region required for E6-dependent ubiquitination of p53 is also required for the ubiquitination of an artificial E6 fusion protein.  相似文献   

19.
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.  相似文献   

20.
Regulation of Mdm2-Directed Degradation by the C Terminus of p53   总被引:12,自引:6,他引:6       下载免费PDF全文
The stability of the p53 tumor suppressor protein is regulated by interaction with Mdm2, the product of a p53-inducible gene. Mdm2-targeted degradation of p53 depends on the interaction between the two proteins and is mediated by the proteasome. We show here that in addition to the N-terminal Mdm2 binding domain, the C terminus of p53 participates in the ability of p53 to be degraded by Mdm2. In contrast, alterations in the central DNA binding domain of p53, which change the conformation of the p53 protein, do not abrogate the sensitivity of the protein to Mdm2-mediated degradation. The importance of the C-terminal oligomerization domain to Mdm2-targeted degradation of p53 is likely to reflect the importance of oligomerization of the full-length p53 protein for interaction with Mdm2, as previously shown in vitro. Interestingly, the extreme C-terminal region of p53, outside the oligomerization domain, was also shown to be necessary for efficient degradation, and deletion of this region stabilized the protein without abrogating its ability to bind to Mdm2. Mdm2-resistant p53 mutants were not further stabilized following DNA damage, supporting a role for Mdm2 as the principal regulator of p53 stability in cells. The extreme C terminus of the p53 protein has previously been shown to contain several regulatory elements, raising the possibility that either allosteric regulation of p53 by this domain or interaction between this region and a third protein plays a role in determining the sensitivity of p53 to Mdm2-directed degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号