首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
L-Glutamine: D-fructose-6-phosphate amidotransferase, known under trivial name of glucosamine-6-phosphate synthase, as the only member of the amidotransferase subfamily of enzymes, does not display any ammonia-dependent activity. This enzyme, catalysing the first committed step in a pathway leading to the eventual formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), is an important point of metabolic control in biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of reaction catalysed by GlcN-6-P synthase is complex and involves both amino transfer and sugar isomerisation. Substantial alterations to the enzyme structure and properties have been detected in different neoplastic tissues. GlcN-6-P synthase is inflicted in phenomenon of hexosamine-induced insulin resistance in diabetes. Finally, this enzyme has been proposed as a promising target in antifungal chemotherapy. Most of these issues, especially their molecular aspects, have been extensively studied in recent years. This article provides a comprehensive overview of the present knowledge on this multi-facets enzyme.  相似文献   

3.
Aron, H. (University of California, Santa Barbara), H. H. Yonenaka, and H. I. Nakada. Glucosamine-6-phosphate degradation by Proteus vulgaris and isolation of phosphoglucosaminisomerase. J. Bacteriol. 87:1123-1128. 1964.-The presence of the enzyme, phosphoglucosaminisomerase, was demonstrated in a strain of Proteus vulgaris. Fructose-6-phosphate and ammonia were shown to be the primary reaction products. The optimal pH was 7.2 with a broad peak. This differs from previously reported bacterial phosphoglucosaminisomerases which had a pH optimum of about 5.8. Other properties of the enzyme are presented.  相似文献   

4.
Glucosamine-6-phosphate isomerase deaminase (2-amino-2-deoxy-d-glucose-6-phosphate ketol isomerase (deaminating), EC 5.3.1.10) from Escherichia coli is an hexameric homopolymer that contains five half-cystines per chain. The reaction of the native enzyme with 5′,5′-dithiobis-(2-nitrobenzoate) or methyl iodide revealed two reactive SH groups per subunit, whereas a third one reacted only in the presence of denaturants. Two more sulfhydryls appeared when denatured enzyme was treated with dithiothreitol, suggesting the presence of one disulfide bridge per chain. The enzyme having the exposed and reactive SH groups blocked with 5′-thio-2-nitrobenzoate groups was inactive, but the corresponding alkylated derivative was active and retained its homotropic cooperativity toward the substrate, d-glucosamine 6-phosphate, and the allosteric activation by N-acetyl-d-glucosamine 6-phosphate. Studies of SH reactivity in the presence of enzyme ligands showed that a change in the availability of these groups accompanies the allosteric conformational transition. The results obtained show that sulfhydryls are not essential for catalysis or allosteric behavior of glucosamine-6-phosphate deaminase.  相似文献   

5.
In the reverse direction, the reaction catalyzed by glucosamine 6-phosphate isomerase deaminase consumes ammonia and forms GlcN6P. As a consequence of the formation of a product with a lower pK than the substrates, a measurable pH drop in the reaction medium is produced. This property can be used to follow potentiometrically the course of the reaction. This property can be used to follow potentiometrically the course of the reaction. The usefulness of the method is demonstrated obtaining the inhibition pattern by GlcN6P when Fru6P is the varied substrate.  相似文献   

6.
Mammalian glucosamine 6-phosphate deaminase (GNPDA) was first detected in hamster spermatozoa. To further elucidate its role, we have cloned mouse GNPDA and produced a polyclonal rabbit anti-GNPDA antibody. This antibody recognized a 33 kDa protein in soluble extracts from mouse brain, liver, kidney, muscle, ovary, testis and sperm. Immunofluorescent analysis of the localization of GNPDA in male reproductive tissue revealed its presence in spermatids and in spermatozoa. In spermatids, GNPDA localized close to the developing acrosome vesicle and in spermatozoa close to the acrosomal region. Following the induction of the acrosome reaction, GNPDA fluorescence in spermatozoa was either reduced or GNPDA was absent. These data suggest that GNPDA might play a role in the acrosome reaction.  相似文献   

7.
Fungal infections are a growing problem in contemporary medicine, yet only a few antifungal agents are used in clinical practice. In our laboratory we proposed the enzyme L-glutamine: D-fructose-6-phosphate amidotransferase (EC 2.6.1.16) as a new target for antifungals. The structure of this enzyme consists of two domains, N-terminal and C-terminal ones, catalysing glutamine hydrolysis and sugar-phosphate isomerisation, respectively. In our laboratory a series of potent selective inhibitors of GlcN-6-P synthase have been designed and synthesised. One group of these compounds, including the most studied N3-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid (FMDP), behave like glutamine analogs acting as active-site-directed inactivators, blocking the N-terminal, glutamine-binding domain of the enzyme. The second group of GlcN-6-P synthase inhibitors mimic the transition state of the reaction taking place in the C-terminal sugar isomerising domain. Surprisingly, in spite of the fact that glutamine is the source of nitrogen for a number of enzymes it turned out that the glutamine analogue FMDP and its derivatives are selective against GlcN-6-P synthase and they do not block other enzymes, even belonging to the same family of glutamine amidotransferases. Our molecular modelling studies of this phenomenon revealed that even within the family of related enzymes substantial differences may exist in the geometry of the active site. In the case of the glutamine amidotransferase family the glutamine binding site of GlcN-6-P synthase fits a different region of the glutamine conformational space than other amidotransferases. Detailed analysis of the interaction pattern for the best known, so far, inhibitor of the sugar isomerising domain, namely 2-amino-2-deoxy-D-glucitol-6-phosphate (ADGP), allowed us to suggest changes in the structure of the inhibitor that should improve the interaction pattern. The novel ligand was designed and synthesised. Biological experiments confirmed our predictions. The new compound named ADMP is a much better inhibitor of glucosamine-6-phosphate synthase than ADGP.  相似文献   

8.
The Candida albicans GFA1 gene encoding glucosamine-6-phosphate synthase, an enzyme of cell wall biosynthesis pathway in fungi and bacteria, recently an object of interest as a target for the chemotherapy of systemic mycoses, was PCR amplified and cloned to an Escherichia coli expression vector pET23b. The activity of the enzyme in the lysates from the overproducing E. coli strain was approximately 50–100 times higher than in the lysates from the control E. coli strain. This abundant overproduction allows to purify milligram amounts of the enzyme to homogeneity.  相似文献   

9.
A key step in amino sugar metabolism is the interconversion between fructose-6-phosphate (Fru6P) and glucosamine-6-phosphate (GlcN6P). This conversion is catalyzed in the catabolic and anabolic directions by GlcN6P deaminase and GlcN6P synthase, respectively, two enzymes that show no relationship with one another in terms of primary structure. In this study, we examined the catalytic properties and regulatory features of the glmD gene product (GlmD(Tk)) present within a chitin degradation gene cluster in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Although the protein GlmD(Tk) was predicted as a probable sugar isomerase related to the C-terminal sugar isomerase domain of GlcN6P synthase, the recombinant GlmD(Tk) clearly exhibited GlcN6P deaminase activity, generating Fru6P and ammonia from GlcN6P. This enzyme also catalyzed the reverse reaction, the ammonia-dependent amination/isomerization of Fru6P to GlcN6P, whereas no GlcN6P synthase activity dependent on glutamine was observed. Kinetic analyses clarified the preference of this enzyme for the deaminase reaction rather than the reverse one, consistent with the catabolic function of GlmD(Tk). In T. kodakaraensis cells, glmD(Tk) was polycistronically transcribed together with upstream genes encoding an ABC transporter and a downstream exo-beta-glucosaminidase gene (glmA(Tk)) within the gene cluster, and their expression was induced by the chitin degradation intermediate, diacetylchitobiose. The results presented here indicate that GlmD(Tk) is actually a GlcN6P deaminase functioning in the entry of chitin-derived monosaccharides to glycolysis in this hyperthermophile. This enzyme is the first example of an archaeal GlcN6P deaminase and is a structurally novel type distinct from any previously known GlcN6P deaminase.  相似文献   

10.
The human genome contains two genes encoding for two isoforms of the enzyme glucosamine-6-phosphate deaminase (GNPDA, EC 3.5.99.6). Isoform 1 has been purified from several animal sources and the crystallographic structure of the human recombinant enzyme was solved at 1.75? resolution (PDB ID: 1NE7). In spite of their great structural similarity, human and Escherichia coli GNPDAs show marked differences in their allosteric kinetics. The allosteric site ligand, N-acetylglucosamine 6-phosphate (GlcNAc6P), which is an activator of the K-type of E. coli GNPDA has an unusual mixed allosteric effect on hGNPDA1, behaving as a V activator and a K inhibitor (antiergistic or crossed mixed K(-)V(+) effect). In the absence of GlcNAc6P, the apparent k(cat) of the enzyme is so low, that GlcNAc6P behaves as an essential activator. Additionally, substrate inhibition, dependent on GlcNAc6P concentration, is observed. All these kinetic properties can be well described within the framework of the Monod allosteric model with some additional postulates. These unusual kinetic properties suggest that hGNPDA1 could be important for the maintenance of an adequate level of the pool of the UDP-GlcNAc6P, the N-acetylglucosylaminyl donor for many reactions in the cell. In this research we have also explored the possible functional significance of the C-terminal extension of hGNPDA1 enzyme, which is not present in isoform 2, by constructing and studying two mutants truncated at positions 268 and 275.  相似文献   

11.
Glucosamine-6-phosphate deaminase (EC 5.3.1.10) from dog kidney cortex was purified to homogeneity, as judged by several criteria of purity. The purification procedure was based on two biospecific affinity chromatography steps, one of them using N-epsilon-amino-n-hexanoyl-D-glucosamine-6-phosphate agarose, an immobilized analog of the allosteric ligand, and the other by binding the enzyme to phosphocellulose followed by substrate elution, which behaved as an active-site affinity chromatography. The enzyme is an hexameric protein of about 180 kDa composed of subunits of 30.4 kDa; its isoelectric point was 5.7. The sedimentation coefficient was 8.3S, and its frictional ratio was 1.28, indicating that dog deaminase is a globular protein. The enzyme displays positive homotropic cooperativity toward D-glucosamine-6-phosphate (Hill coefficient = 2.1, pH 8.8). Cooperativity was completely abolished by saturating concentrations of GlcNAc6P; this allosteric modulator activated the reaction with a typical K-effect. Under hyperbolic kinetics, a Km value of 0.25 +/- 0.02 mM for D-glucosamine-6-phosphate was obtained. Assuming six catalytic sites per molecule, kcat is 42 s-1. Substrate-velocity data were fitted to the Monod's allosteric model for the exclusive-binding case for both substrate and activator, with two interacting substrate sites. The Kdis for N-acetyl-D-glucosamine-6-phosphate was estimated at 14 microM.  相似文献   

12.
Glucosamine-6P-deaminase (EC 3.5.99.6, formerly glucosamine-6-phosphate isomerase, EC 5.3.1.10) from Escherichia coli is an attractive experimental model for the study of allosteric transitions because it is both kinetically and structurally well-known, and follows rapid equilibrium random kinetics, so that the kinetic K(m) values are true thermodynamic equilibrium constants. The enzyme is a typical allosteric K-system activated by N-acetylglucosamine 6-P and displays an allosteric behavior that can be well described by the Monod-Wyman-Changeux model. This thermodynamic study based on the temperature dependence of allosteric parameters derived from this model shows that substrate binding and allosteric transition are both entropy-driven processes in E. coli GlcN6P deaminase. The analysis of this result in the light of the crystallographic structure of the enzyme implicates the active-site lid as the structural motif that could contribute significantly to this entropic component of the allosteric transition because of the remarkable change in its crystallographic B factors.  相似文献   

13.
The amino-terminal cysteine of glucosamine-6-phosphate synthase (GlmS) acts as a nucleophile to release and transfer ammonia from glutamine to fructose 6-phosphate through a channel. The crystal structure of the C1A mutant of Escherichia coli GlmS, solved at 2.5 Å resolution, is organized as a hexamer, where the glutaminase domains adopt an inactive conformation. Although the wild-type enzyme is active as a dimer, size exclusion chromatography, dynamic and quasi-elastic light scattering, native polyacrylamide gel electrophoresis, and ultracentrifugation data show that the dimer is in equilibrium with a hexameric state, in vitro and in cellulo. The previously determined structures of the wild-type enzyme, alone or in complex with glucosamine 6-phosphate, are also consistent with a hexameric assembly that is catalytically inactive because the ammonia channel is not formed. The shift of the equilibrium toward the hexameric form in the presence of cyclic glucosamine 6-phosphate, together with the decrease of the specific activity with increasing enzyme concentration, strongly supports product inhibition through hexamer stabilization. Altogether, our data allow us to propose a morpheein model, in which the active dimer can rearrange into a transiently stable form, which has the propensity to form an inactive hexamer. This would account for a physiologically relevant allosteric regulation of E. coli GlmS. Finally, in addition to cyclic glucose 6-phosphate bound at the active site, the hexameric organization of E. coli GlmS enables the binding of another linear sugar molecule. Targeting this sugar-binding site to stabilize the inactive hexameric state is therefore suggested for the development of specific antibacterial inhibitors.  相似文献   

14.
Glucosamine-6-phosphate isomerase deaminase from Escherichia coli, a typical allosteric enzyme, becomes less cooperative and 50% inhibited when treated with zinc. This metal cation behaving as a tight-bound and slow partial inhibitor. Modification of a pair of vicinal reactive thiols with some sulfhydryl reagents mimics this effect. On the other hand, sulfhydryl reactivity disappears in the presence of saturating concentrations of Zn2+, which does not modify the kinetics of S-methylated enzyme, a finding that indicates that vicinal thiols are an essential part of the zinc-binding site. Allosteric activation of the deaminase causes trapping of the metal, which cannot be released by dialysis against a buffer containing EDTA. Cadmium and nickel(II) cations also produce a similar effect.  相似文献   

15.
Methylation of glucosamine-6-phosphate isomerase deaminase (2-amino-2-deoxy-D-glucose-6-phosphate ketol-isomerase, deaminating, or glucosamine-6-phosphate deaminase, EC 5.3.1.10), from Escherichia coli produces a modified protein having two alkylated sulfhydryls per each polypeptide chain. The enzyme is still active and allosteric, but exhibits a lower homotropic cooperativity and its Vmax/Etotal is almost exactly half that of the native enzyme. Arsenite produces comparable kinetic changes that can be reversed with ethanedithiol but not with 2-thioethanol or dialysis. Thiols can be oxidized by molecular oxygen using the (1,10-phenanthroline)3-Cu(II) complex as catalyst; the enzyme obtained no longer has titrable SH groups with 5,5'-dithiobis(2-nitrobenzoic acid) and displays kinetic behavior similar to that of the other chemically modified forms of the deaminase using monofunctional or bifunctional reagents. The results reported indicate that the involved sulfhydryls are vicinal groups, and are located in a region of the molecule that moves as a whole in the allosteric transition.  相似文献   

16.
Hexameric glucosamine-6-phosphate deaminase from Escherichia coli has been crystallized isomorphously with both phosphate and ammonium sulphate as precipitants, over a wide pH range (6.0 to 9.0). The crystals belong to space group R32 and the cell parameters in the hexagonal setting are a = b = 125.9 A and c = 223.2 A. A complete native data set was collected to 2.1 A resolution. Self-rotation function studies suggest that the hexamers sit on the 3-fold axis and have point group symmetry 32, with a non-crystallographic dyad relating two monomers linked by an interchain disulfide bridge. A possible packing for the unit cell is proposed.  相似文献   

17.
18.
The secondary structure of the purified glucosamine-6-phosphate deaminase from Escherichia coli K12 was investigated by both circular dichroism (CD) spectroscopy and empirical prediction methods. The enzyme was obtained by allosteric-site affinity chromatography from an overproducing strain bearing a pUC18 plasmid carrying the structural gene for the enzyme. From CD analysis, 34% of alpha-helix, 9% of parallel beta-sheet, 11% of antiparallel beta-sheet, 15% turns and 35% of non-repetitive structures, were estimated. A joint prediction scheme, combining six prediction methods with defined rules using several physicochemical indices, gave the following values: alpha-helix, 37%; beta-sheet, 22%; turns, 18% and coil, 23%. The structure predicted showed also a considerable degree of alternacy of alpha and beta structures; 64% of helices are amphipathic and 90% of beta-sheets are hydrophobic. Overall, the data suggest that deaminase has as dominant motif, an alpha/beta structure.  相似文献   

19.
Trehalose 6-phosphate   总被引:1,自引:0,他引:1  
Trehalose 6-phosphate (T6P) is a sugar signal of emerging significance. It is an essential component of the mechanisms that coordinate metabolism with plant growth adaptation and development. Its significance began to dawn when genetic modification of the trehalose pathway produced dramatic phenotypes, before the genetic proliferation of the trehalose pathway in plants was fully realised. T6P regulates sugar utilization and starch metabolism and interacts with other signalling pathways, including those mediated by plant hormones. Trehalose phosphate synthases (TPSs) and trehalose phosphate phosphatases are regulated at the gene level by sugars, nitrate, cytokinin and abscisic acid. TPSs are also regulated post-translationally. Mechanistic details of how T6P signals are emerging, but still sparse. Nevertheless, even at this stage, targeting central regulators such as T6P offers promise in crop improvement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号