共查询到5条相似文献,搜索用时 0 毫秒
1.
Abstract Photon requirements for growth (φg?1) of the diatom Phaeodactylum tricornutum were determined under nutrient-sufficient conditions at two photon flux densities corresponding to light limited and near-saturating conditions for growth. The value of φg?1 based on assimilated carbon was light-dependent and varied from 8.8 to 14.0 mol photon mol C?1 with the minimum value at the lowest photon flux density. These results are lower than might be predicted for microalgal growth based on the Z scheme of photosynthesis. Conversion of these values for carbon fixation to estimates based on oxygen evolution is problematical due to uncertainty over the appropriate assimilatory quotient (Qa= mol O2 mol C?1). Minimum values based on oxygen evolution rates ranged from 6.2 to 7.6 mol photon mol O2?1 using a Qa of 1.41 mol O2 mol C?1 obtained by Myers (1980). These estimates are similar to our previous measurements for photosynthesis and indicate a high efficiency for light energy transforming reactions during growth. The values of (φg?1 obtained in this work indicate a number of inadequacies in our understanding of the energetics of microalgal growth and are inconsistent with our present knowledge of photosynthetic energy coupling in plant cells. 相似文献
2.
In a series of 188 experiments on the, light-saturation curve for natural assemblages of phytoplankton at 3 stations in Nova Scotia coastal waters, it was found that both the initial slope (α) of the curve and the assimilation number (PmB) varied about 5-fold throughout the year. No differences could be detected between stations, but both α and PmB decreased with depth. The mean value of α for all the experiments was 0.21 mg C[mg Chl a]?1· h?1· W?1· m2 with a range from 0.03 to 0.63. An explanation is offered for the nonconstancy of a in terms of the effect of cell-size and shape on self-shading. An estimate is made from first principles of the physiological maximum-attainable value of α. This estimate corresponds, within the limits of experimental error, to the highest values of α observed in the study. It is deduced that on the average the phytoplankton were photosynthesizing at only 44% maximum capacity. The mean value of PmB for all experiments was 4.9 mg C[mg Chl a]?1· h?1, with a range from 0.73 to 24.8. In the matrix of partial correlation coefficients, α and PmB were positively correlated with each other; α was correlated with mean solar radiation averaged over the 3 days prior to the experiment, but uncorrelated with temperature; PmB was correlated strongly with temperature but uncorrelated with recent solar radiation. The results show that PmB could be estimated from α and temperature using an empirical multiple regression equation, independent of depth. It is suggested that α and PmB are both correlated with some other factor not measured in the study, perhaps the mean cell-size of the populations, or the nutrient status of the cells. The predictability of primary production is discussed in the light of this evidence. 相似文献
3.
The marine alga Heterosigma carterae Hulburt (Raphidophyta) was grown in N-limiting batch cultures using either nitrate or ammonium as the N source, at photon flux densities (PFDs) of 50, 200, and 350 μmol·m-2 ·s-1 in a 12:12 h LD cycle. Carbon content could be estimated from biovolume (μg C = 0.278 × nL; R = 0.98) but not reliably from pigment content. During exponential growth, ammonium-grown cells (in comparison with nitrate-grown cells at the same PFD) attained higher growth rates by at least 20%, contained more N, and had a lower C:N ratio, higher concentrations of intracellular free amino acids, and higher ratios of glutamine: glutamate (Gln: Glu) and asparagine: aspartate (Asn:Asp). Growth was nearly light-saturated on ammonium at 200 μmol·m-2 ·s-1 (cell-specific growth rate of 1.2 d-1 ) but probably not saturated in nitrate-grown cells at 350 μmol·m-2 ·s-1 . PFD did not affect Gln: Glu or Asn: Asp for a given N source. These results indicate that the nitrate-growing cells were more N-stressed than those using ammonium (which in contrast were relatively C-stressed) and that this organism would show an enhanced competitive advantage against other species when supplied with a transient supply of ammonium rather than nitrate . 相似文献
4.
5.
The influence of photoadaptive state on the spectral dependency of the maximum quantum yield for carbon fixation was determined for two red tide dinoflagellates, Heterocapsa pygmaea Loeblich, Schmidt, et Sherley and Prorocentrum minimum Pavillard. Cultures were acclimated to green, blue, red, and white light. The spectral dependency in the light-limited slope of the photosynthesis–irradiance curves (α) was measured with carbon action spectra that, when divided by the spectrally weighted absorption coefficient, provided estimates of the maximum quantum yield (φmax) for carbon fixation. Values of φmax varied with wavelength within each culture condition as well as between different culture conditions. The degree to which the spectral dependency in φmax was influenced by the presence of photoprotective carotenoids and/or energy imbalances between photosystems I and II was assessed for both dinoflagellates. The impact of photoprotective pigmentation on the spectral dependency of φmax was most significant for cells grown under high light conditions reflecting the enrichment of diadinoxanthin. Energy imbalances between the photosystems was assessed by quantifying enhancement effects on spectral φmax in the presence of background illumination. Under our experimental conditions, enhancement effects on carbon action spectra were evident for H. pygmaea under nearly all growth conditions but were not detectable for P. minimum under any growth condition. We hypothesize that sensitivity to enhancement effects reflected differences in the structure of the photosynthetic machinery of these two peridinin-containing dinoflagellates. While measurements of φmax are sensitive to the color of the light within an incubator, the relative impact on the spectral dependency of a was less than the wavelength dependency associated with the cellular absorption properties. Finally we used our data to validate an approach proposed by others to aid in the correction of photosynthetic measurements where the in situ spectral light field cannot be easily mimicked. The average error using this approach was 8%, which was significantly less than the error associated with ignoring the spectral dependency in α. 相似文献