首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苋菜的光合特性   总被引:4,自引:0,他引:4  
孙谷畴   《广西植物》1988,(3):279-284
宽菜Amaranthus cruentus cv.生长在调控的温室条件。在光强0至800μmol.m~(-2)S~(-1),光合速率(PN,μmol.CO_2m~(-2)、s~(-1))随光强(PFD,μmol、m~(-2)、s~(-1))增高而增大,其关系为PN=56.82 PFD×10~(-3)—2.13。光补偿点为60μmol.m~(-2)、s~(-1)。叶片在1400 μmol.m~(-2)、s~(-1)达到光合光饱和点。在叶温35℃,叶片/空气水蒸汽压陡度20 m Pa、Pa~(-1)和外界CO_2浓度340μ1、1~(-1),光饱和光合速率为51.63±4.90μ mol.CO_2、m~(-2)、S~(-1)。在光强0至600μmol.m~(-2)、s~(-1),气孔传道率随光强增高而增大。光强高于600μmol.m~(-2)、s~(-1),气孔传道率变化较小。细胞间CO_2浓度为120μ1.1~(-1)由于细胞间CO_2浓度在光合速率——CO_2关系曲线的转折点,可能表明光合作用不受气孔限制。结果表明,苋菜适于高光强环境生长,在干旱条件下具有高的光合速率。  相似文献   

2.
参棚透光率对西洋参叶片光合作用的影响   总被引:4,自引:0,他引:4  
研究了参棚透光率与西洋参叶片净光合速率之间的关系.结果表明,西洋参叶片光饱和点、净光合速率及其日变型均随参棚透光率的不同,存在一定的差异.4年生西洋参叶片在12%、30%、42%3种透光率下(气温29.0℃左右),光饱和点分别为171.0、323.0和429.0μmol·m^-2·s^-1,净光合速率最大值为6.54mg·dm^-2·h^-1(CO2),出现在透光率为30%的参棚下;3年生西洋参在透光率不超过25.8%的参棚下,叶片净光合速率日变化呈单峰型,透光率大于25.8%时,呈双峰型,参叶“光合午休”现象明显.单相关分析表明,光量子通量密度是影响西洋参净光合速率的主要因子;回归分析结果表明,各影响因子对参叶净光合速率的综合影响显著.  相似文献   

3.
A K Janoudi  K L Poff 《Plant physiology》1993,101(4):1175-1180
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.  相似文献   

4.
孙谷畴   《广西植物》1987,(3):239-243
亚热带季雨林林下阴生植物罗伞(Ardisia quinquegona)叶片的气体交换速率(PN.μmol.m~(-2),s~(-1))随光强(PFD,μmol,m~(-2),s~(-1))增高而增大。在光强低于80μmol,m~(-2),s~(-1),PN=29.21PFD×10~(-3)+0.36。在光强150μmol,m~(-2),s~(-1)对出现气体交换的光饱和现象。在低光强下,气孔传导率(G,m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=265.6 PFD+4.6。在低光强下。开阔地的阳生灌木桃金娘(Rhodmyrtus tomentosa)的气体交换速率和气孔传导率与光强关系曲线的直线部分斜率皆较罗伞的低,在红光上,罗伞叶片气体交换速率(μmol,m~(-2),s~(-1)与光强(μmol,m~(-2),s~(-1)的关系为PN=32.4 PFD×10~(-3)-0.04。气孔传导率(m mol,m~(-2),s~(-1)与光强(m mol,m~(-2),s~(-1)的关系为G=339.08 PFD+7.37。同时气体交换速率的饱和红光光强亦较白光的高。在蓝光光强低时,气体交换速率(μmol,m~(-2),s~(-1))与光强(μmol,m~(-2),s~(-1))的关系为PN=13.54 PFD×10~(-3)—0.17,而气孔传导率(m mol,m~(-2),s~(-1))与光强(mμmol,m~(-2),s~(-1))的关系为G=80.5 PFD+4.35。在低的蓝光下,体交换速率和气孔传导率与光强关系曲线的直线部分斜率显著较在白光和红光下的低。罗伞叶片气体交换对红光的反应敏感。  相似文献   

5.
Photosynthesis and growth to maturity of antisense ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase Arabidopsis thaliana with reduced concentrations of activase relative to wild-type (Wt) plants were measured under low (200 mumol m-2 s-1) and high (600 mumol m-2 s-1) photosynthetic photon flux density growing conditions. Both growth and photosynthesis were significantly reduced in an Arabidopsis clone (R100) with 30 to 40% Wt activase, an effect that was more pronounced in high light. The aboveground biomass of the antisense clone R100 reached 80% of Wt under low light and 65% of Wt under high light. Decreased growth in the antisense plants was attributed to reduced relative rates of growth and leaf area expansion early in development; all plants attained similar values of relative rates of growth and leaf elongation by 21 d after planting. Reductions in photosynthesis were attributed to decreased Rubisco activation in the antisense plants. Rubisco constituted about 40% of total soluble protein in both Wt and clone R100 under both light regimes. Activase content was 5% and 1.4% of total soluble protein in Wt and clone R100, respectively, and also was unaffected by growth irradiance. The stoichiometry of Rubisco to activase was estimated at 20 Rubisco active sites per activase tetramer in Wt Arabidopsis and 60 to 80 in the transgenic clone R100. We conclude that Wt Arabidopsis does not contain Rubisco activase in great excess of the amount required for optimal growth.  相似文献   

6.
The microalga Haematococcus pluvialis Flotow is one of the natural sources of astaxanthin, a pigment widely used in salmon feed. This study was made to discover optimal conditions for biomass and astaxanthin production in H. pluvialis from Steptoe, Nevada (USA), cultured in batch mode. Growth was carried out under autotrophic (with NaNO3, NH4Cl and urea) and mixotrophic conditions (with 4, 8, 12 mM sodium acetate) under two photon flux densities (PFD) (35 and 85 mumol m-2 s-1). The carotenogenesis was induced by 1) addition of NaCl (0.2 and 0.8%), 2) N-deprivation and 3) high PFD (150 mumol m-2 s-1). Total carotenoids were estimated by spectrophotometry and total astaxanthin by HPLC. Ammonium chloride was the best N-source for growth (k = 0.7 div day-1, 228-258 mg l-1 and 2.0 x 10(5)-2.5 x 10(5) cells ml-1 at both PFD, respectively). With increasing acetate concentration, a slight increment in growth occurred only at 85 mumol m-2 s-1. Light was the best inductive carotenogenic factor, and the highest carotenoid production (4.9 mg l-1, 25.0 pg cell-1) was obtained in cultures pre-grown in nitrate at low light. The NaCl caused an increase in carotenoid content per cell at increasing salt concentrations, but resulted in a high cell mortality and did not produce any increment in carotenoid content per volume compared to cultures grown at 150 mumol m-2 s-1. The highest carotenoid content per cell (22 pg) and astaxanthin content per dry weight (10.3 mg g-1) (1% w/w) were obtained at 85 mumol m-2 s-1 with 0.8% NaCl.  相似文献   

7.
HERPPICH  W.B. 《Photosynthetica》1998,34(1):1-12
Well-watered plants of Plectranthus marrubioides Benth., a crassulacean acid metabolism (CAM) species naturally inhabiting sun exposed succulent places, were grown at photosynthetically active photon flux densities (PPFD) of either 150 (LL) or 300 (HL) μmol m-2 s-1 in a controlled environment. Photosynthesis of LL plants was saturated by irradiance of ca. 500 μmol m-2 s-1 while in HL plants saturation was not reached up to 1200 μmol m-2 s-1 and photosynthetic capacity was nearly 50 % higher than in the LL plants. However, maximum photon yield was 55 % lower and compensation irradiance was 25 % higher in LL plants. The former also had larger, more succulent leaves, i.e., they were morphologically more sun adapted. On the other hand, nocturnal accumulation of malic and citric acid, nighttime CO2 gain, and the low relative carbon recycling were independent of the prevailing PPFD. Furthermore, photosynthetic performance was flexibly and reversibly adjusted in HL plants after transfer to 600 or 150 μmol m-2 s-1 while nocturnal CO2 uptake was not influenced. Photosynthesis showed a high acclimation potential to high PPFD and patterns of gas exchange became more C3-like the higher the irradiance was, without a direct effect on CAM in P. marrubioides.  相似文献   

8.
Natural photosynthetic biofilms were incubated under light (100 mmol m-2 s-1) and dark conditions to elucidate the impact of photosynthesis on bacterial production, abundance, biovolume, biomass, and enzyme activities over 24 h. Use of organic carbon-free media limited carbon sources to algal photosynthesis and possibly the polysaccharides of the biofilm matrix. Bacterial production of biofilm communities was significantly higher in light incubations (p <0.001). The greatest differences in production rates between light and dark incubations occurred between 8 and 24 h. Biomass-specific a- and b-glucosidase and b-xylosidase activities were stimulated by photosynthesis, with significantly greater activities occurring at hours 16 and 24 in the light treatment (p <0.01). The results indicate that algal photosynthesis can have a significant impact on bacterial productivity, biomass, biovolume, and enzyme production over longer time periods at low photon flux densities (?100 mmol m-2 s-1).  相似文献   

9.
环境因子对细基江蓠繁枝变种氮、磷吸收速率的影响   总被引:17,自引:0,他引:17  
实验室条件下,研究了光强、酸碱度、温度、盐度对细基江蓠繁枝变种N、P吸收速率的影响.细基江蓠繁枝变种对N的吸收速率在光强为800~2400μmolphoton  相似文献   

10.
Well-watered plants of Plectranthus marrubioides Benth., a crassulacean acid metabolism (CAM) species naturally inhabiting sun exposed succulent places, were grown at photosynthetically active photon flux densities (PPFD) of either 150 (LL) or 300 (HL) μmol m-2 s-1 in a controlled environment. Photosynthesis of LL plants was saturated by irradiance of ca. 500 μmol m-2 s-1 while in HL plants saturation was not reached up to 1200 μmol m-2 s-1 and photosynthetic capacity was nearly 50 % higher than in the LL plants. However, maximum photon yield was 55 % lower and compensation irradiance was 25 % higher in LL plants. The former also had larger, more succulent leaves, i.e., they were morphologically more sun adapted. On the other hand, nocturnal accumulation of malic and citric acid, nighttime CO2 gain, and the low relative carbon recycling were independent of the prevailing PPFD. Furthermore, photosynthetic performance was flexibly and reversibly adjusted in HL plants after transfer to 600 or 150 μmol m-2 s-1 while nocturnal CO2 uptake was not influenced. Photosynthesis showed a high acclimation potential to high PPFD and patterns of gas exchange became more C3-like the higher the irradiance was, without a direct effect on CAM in P. marrubioides. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
两种匍灯藓属植物夏季和冬季光合特性的比较研究   总被引:6,自引:5,他引:1  
分别对生长于冬季和夏季的五倍子蚜虫冬寄主藓类植物湿地匍灯藓(Plagiomnium acutum(Lindb.)T.Kop.)和侧枝葡灯藓(Plagiomnium maximoviczii(Lindb.)T.Kop.)的净光合速率及其与光照、温度的关系进了比较研究.结果表明,2种藓类的最大光合能力在夏季分别为125.67和94.63μmolCO2  相似文献   

12.
A glucose-tolerant strain of Synechocystis sp. strain 6803 will not grow on glucose under complete darkness unless given a daily pulse of white light, typically 5 min of 40 mumol m-2 s-1 (light-pulsed conditions). The light pulse is insufficient for photoautotrophy, as glucose is required and growth yield is dependent on glucose concentration. Growth rate is independent of fluence, but growth yield is dependent on fluence, saturating at 40 to 75 mumol m-2 s-1. A Synechocystis strain 6803 psbA mutant strain grows under light-pulsed conditions at rates similar to those for the glucose-tolerant strain, indicating that photosystem II is not required for growth. The relative spectral sensitivity of the growth of light-pulsed cultures (growth only in blue light, 400 to 500 nm, maximum at 450 nm) precludes energetic contribution from cyclic electron transport around photosystem I. Pulses of long-wavelength light (i.e., 550 and 650 nm) did not support the growth of Synechocystis strain 6803 and, when supplied before or after a blue-light pulse, did not inhibit blue-light-stimulated growth of Synechocystis strain 6803. We conclude that the required blue-light pulse does not support growth via photosynthetic electron transport but appears instead to function as an environmental signal regulating heterotrophic metabolism, cell division, or other photomorphogenic processes. We have termed the growth of Synechocystis strain 6803 pulsed with light and kept otherwise in complete darkness light-activated heterotrophic growth. This observation of a blue-light requirement for the growth of Synechocystis strain 6803 represents a novel blue light effect on the growth of a cyanobacterium.  相似文献   

13.
Y Liu  J Li  J Chen  T Cao 《应用生态学报》2000,11(5):687-692
The net photosynthesis of Thuidium cymbifolium and Chrysocladium retrorsum, two species of wintering host mosses for gullaphids, and its response to light, temperature and water content were measured with CI-301PS(CID Inc. USA) both in winter and spring. The photosynthetic capacity of Thuidium cymbifolium and Chrysocladium retrorsum was about 141 and 117 mumolCO2kg-1dw.s-1, respectively, and trended to increase from winter to spring. The light saturation point of these two mosses at 800-900 mumol.m-2.s-1 was much higher than that of many other mosses, and the compensation point ranged from 40 to 50 mumol.m-2.s-1. The temperature response curves of these two mosses were similar, with optium temperature ranging from 25 to 36 degrees C in spring, and from 20 to 30 degrees C in winter. When the temperature was below the freezing point(-15 to 0 degree C), they both maintained a distinct net photosynthesis, with the optimum water content ranging from 200 to 300(400)% dw. The photosynthesis started to be restrained evidently, when the water content declined to about 150% dw. The gas exchange ceased or became negative, when the water content was as low as 40-50% dw. It can be inferred that these two species might be both poikilothermal and poikilohydric organisms, but the resistibility of T. cymbifolium to intense light and high temperature was higher than that of C. retrorsum.  相似文献   

14.
 以亚热带常绿阔叶林下一种常见的灌木富贵草(Pachysandra terminalis)为研究对象,利用气体交换和叶绿素荧光技术研究了其对模拟光斑的光合响应。在同样辐射通量(非光抑制)的情况下,光合诱导过程的快速组分时间内光斑可以提高富贵草对光斑的利用能力(光斑诱导的碳同化量可高出对照48%)。叶绿素荧光测量结果表明:1)光斑与光斑之间的暗期发生了qN弛豫过程;2)暗期之后的光期光化学能量转换效率提高。这两个原因可能是快速组分时间内光斑诱导富贵草的碳同化量提高的主要原因之一。强光光斑簇可以诱导富贵草光抑制  相似文献   

15.
The response of steady-state fluorescence (Fs) to irradiance in apple (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd.) leaf increased and decreased at light levels below and above 400 mmol.m-2.s-1 photosynthetic photon flux density (PPFD), respectively, while the light-adapted maximal fluorescence (Fm') and minimal fluorescence (Fo') decreased constantly with the increasing PPFD, and the closure of photosystem Ⅱ reaction center (PSⅡ RC) increased continuously, reflected by the chlorophyll fluorescence parameter of (Fs-Fo')/(Fm'-Fo'). These facts indicated that decrease of Fs above 400 mmol.m-2.s-1 PPFD was not caused by closure of PSⅡ RC, but was mainly resulted from the process of light transfer from light-harvesting complexⅡ (LHCⅡ) to PSⅡ RC. In the presence of N-ethylmaleimide (NEM), an inhibitor of photosynthetic state transition, Fs kept on increasing in apple leaf at light levels from 400 to 700 mmol.m-2.s-1, which was the photosynthetic saturation irradiance of apple leaves. In addition, Fs still increased at light levels over 700 mmol.m-2.s-1 in apple leaf pre-treated with dithiothreitol (DTT), an inhibitor of xanthophyll cycle. These changes showed that state transition and xanthophyll cycle caused a decrease of Fs in apple leaf at light levels below and above the photosynthetic saturation irradiance, respectively. When apple leaf was pre-treated with NEM, the PSⅡ apparent rate of photochemical reaction (P-rate) and photochemical quenching (qP) decreased significantly in the light range of 600-800 mmol.m-2.s-1, but the non-photochemical quenching (qN) existed a small increase at 600-800 mmol.m-2.s-1 and a decrease above 800 mmol.m-2.s-1. These phenomena suggested that state transition was mainly a photochemical and a non-photochemical process in apple leaf responding to light lower and higher than photosynthetic saturation irradiance, respectively.  相似文献   

16.
高CO2浓度对温带三种针叶树光合光响应特性的影响   总被引:13,自引:1,他引:13  
将长白山地区阔叶红松林中主要针叶树种红松、红皮云杉和长白落叶松的幼苗 ,盆栽于模拟自然光照和人工调节CO2 浓度为 70 0和 40 0 μmol·mol-1的气室内两个生长季 ,在各自的生长环境条件下 ,利用CI 30 1PS便携式CO2 分析系统测定针叶的光合光响应曲线 .结果表明 ,不同树种及同一树种的不同CO2浓度处理间差异明显 .比较饱和净光合速率、暗呼吸、光补偿点、光饱和点、及光能利用率 (QUE)的变化可见 ,长白落叶松为阳性树种 ,其光合作用对高CO2 浓度的适应能力较好 ,红松树种次之 ,阴性树种红皮云杉光合作用对高CO2 浓度适应能力最差 .并初步探讨了供试树种光合生理特性及其演替状况间的联系  相似文献   

17.
作物光合、蒸腾与水分高效利用的试验研究   总被引:54,自引:6,他引:48  
王会肖  刘昌明 《应用生态学报》2003,14(10):1632-1636
通过田间试验,对作物光合、蒸腾、气孔行为及其影响因素进行了研究。结果表明,光合与蒸腾的非线性关系可以用抛物线方程表述,其中光合速率最高时的蒸腾速率为临界值,超出该值即为奢侈蒸腾,干旱处理的临界值较低,通过合适的调控措施,抑制奢侈蒸腾并不影响光合生产,综合分析光合速率、蒸腾速率与气孔导度的关系,气孑L导度大于0.12mol·m-2·s-1,实施提高气孔阻力并抑制蒸腾的措施,既节约水分又促进光合作用,增加产量.光合速率基本上随光合有效辐射的增加而提高,并有光饱和点存在,水分条件影响叶片光合作用达到饱和的早晚,干旱处理的光饱和点远远低于湿润处理,强光需要水分充足相耦合,才能充分发挥光能利用率,蒸腾与辐射的线性关系十分显著。从光合有效辐射入手,在光合有效辐射大于1000μmol·m-2·s-1时实施措施,既可大大降低蒸腾,又可改善光合,节水增产效果不言而喻。  相似文献   

18.
唐峰  梁惠凌  王满莲 《广西植物》2016,36(5):570-573
为了解濒危植物广西八角莲对环境光强的适应性,该研究以广西八角莲同属渐危种八角莲为对照,采用Li-6400便携式光合测定系统对两种植物的光合光响应特性进行了比较研究,进而探讨广西八角莲的濒危机制。结果表明:广西八角莲与的八角莲的光饱和点分别为440和530μmol·m~(-2)·s~(-1),光补偿点为13.25和13.10μmol·m~(-2)·s~(-1),最大净光合速率为3.62和6.81μmol·m~(-2)·s~(-1),表观量子效率为0.065和0.042μmol·μmol~(-1),两种八角莲均具阴生草本植物的光合特性,但其光补偿点与饱和点均高于一般阴生草本,10%~30%阴蔽度的林下生境有利于两种八角莲的生长;两种植物相比较,广西八角莲的光合能力较弱,光饱和点较低,但其弱光下的量子效率较高。大部分光强下,八角莲的净光合速率、气孔导度和蒸腾速率均高于广西八角莲,但广西八角莲的瞬时水分利用效率却高于八角莲,表明广西八角莲的光合策略比较保守,以较低的光合积累为代价来维持较高的水分利用效率,以保持体内水分平衡。  相似文献   

19.
Early iron deficiency stress response in leaves of sugar beet.   总被引:6,自引:0,他引:6       下载免费PDF全文
T L Winder  J N Nishio 《Plant physiology》1995,108(4):1487-1494
Iron nutrient deficiency was investigated in leaves of hydroponically grown sugar beets (Beta vulgaris) to determine how ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression is affected when thylakoid components of photosynthesis are diminished. Rubisco polypeptide content was reduced by 60% in severely iron-stressed leaves, and the reduction was directly correlated to chlorophyll content. The concentration of Rubisco protein in iron-stressed leaves was found to be regulated by availability of mRNAs, and CO2 fixation by Rubisco was reduced from 45 mumol CO2 m-2 s-1 in extracts from iron-sufficient leaves to 20 mumol CO2 m-2 s-1 in extracts from severely stressed leaves. The rate of CO2 fixation was directly correlated to leaf chlorophyll content. Rubisco in iron-sufficient control leaves was 59% activated, whereas in severely stressed leaves grown under the same light, Rubisco was 43% activated. RNA synthesis was reduced by about 50% in iron-deficient leaves, but 16S and 25S rRNA and ctDNA were essentially unaffected by iron stress.  相似文献   

20.
张健  刘美艳   《广西植物》2005,25(6):576-578
采用美国LI-COR生产的LI-6400便携式光合系统研究了米瓦罐的光合特性。结果表明,米瓦罐光 合速率的日变化呈单峰曲线,上午10:00时光合速率达到最大值;在大气CO2浓度下,米瓦罐的光饱和点为 1 800μmol·m-2·s-1,光补偿点为30μmol·m-2·s-1;在光饱和点的光强下,米瓦罐的CO2饱和点为1 200 μmolCO2·mol-1,CO2补偿点为40μmolCO2·mol-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号