首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ATP-dependent protein kinase activities were detected in both membrane and cytoplasmic fractions from the oral pathogen Streptococcus mutans. Different polypeptides were phosphorylated by endogenous kinase(s) in the two fractions. In membranes, five phosphoproteins were detected with apparent masses of 82, 37, 22, 12, and 10 kilodaltons (KD). In cytoplasm, two major acid-stable phosphoproteins were found. One was identified as HPr of the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS), while the other had an apparent mass of 61 KD. Both of these proteins were phosphorylated on a seryl residue. Fructose 1,6-bisphosphate stimulated phosphorylation of HPr by the kinase and inhibited phosphorylation of the 61-KD protein. In contrast, fructose 1-phosphate, 2-phosphoglycerate, 3-phosphoglycerate, and dihydroxyacetone phosphate inhibited phosphorylation of HPr and stimulated phosphorylation of the 61-KD protein. Several other glycolytic intermediates as well as inorganic phosphate inhibited phosphorylation of either or both proteins. Preincubation of cytoplasm with PEP prior to incubation with ATP reduced the amount of phospho-(seryl)-HPr formed, but not that of the 61-KD phosphoprotein. The latter protein has not yet been identified but has properties that suggest that it may be the protein kinase itself. These results provide evidence for one or more soluble ATP-dependent protein kinases in S mutans that are regulated by glycolytic intermediates and that may play a role in the modulation of carbohydrate uptake and metabolism in this organism. A model for feedback regulation of sugar transport in S mutans, mediated by an allosterically regulated kinase, is presented.  相似文献   

2.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

3.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

4.
The effect of increasing concentrations of Zn2+ (1 microM-5 mM) on protein phosphorylation was investigated in cytosol (S3) and crude synaptic plasma membrane (P2-M) fractions from rat cerebral cortex and purified calmodulin-stimulated protein kinase II (CMK II). Zn2+ was found to be a potent inhibitor of both protein kinase and protein phosphatase activities, with highly specific effects on CMK II. Only one phosphoprotein band (40 kDa in P2-M phosphorylated under basal conditions) was unaffected by addition of Zn2+. The vast majority of phosphoprotein bands in both basal and calcium/calmodulin-stimulated conditions showed a dose-dependent inhibition of phosphorylation, which varied with individual phosphoproteins. Two basal phosphoprotein bands (58 and 66 kDa in S3) showed a significant stimulation of phosphorylation at 100 microM Zn2+ with decreased stimulation at higher concentrations, which was absent by 5 mM Zn2+. A few Ca2+/calmodulin-stimulated phosphoproteins in P2-M and S3 showed biphasic behavior; inhibition at less than 100 microM Zn2+ and stimulation by millimolar concentrations of Zn2+ in the presence or absence of added Ca2+/calmodulin. The two major phosphoproteins in this group were identified as the alpha and beta subunits of CMK II. Using purified enzyme, Zn2+ was shown to have two direct effects on CMK II: an inhibition of Ca2+/calmodulin-stimulated autophosphorylation and substrate phosphorylation activity at low concentrations and the creation of a new Zn(2+)-stimulated, Ca2+/calmodulin-independent activity at concentrations of greater than 100 microM that produces a redistribution of activity biased toward autophosphorylation and an alpha subunit with an altered mobility on sodium dodecyl sulfate-containing gels.  相似文献   

5.
Plant phosphoproteomics: a long road ahead   总被引:3,自引:0,他引:3  
Phosphoproteomics can be defined as the comprehensive study of protein phosphorylation by identification of the phosphoproteins, exact mapping of the phosphorylation sites, quantification of phosphorylation, and eventually, revealing their biological function. Its place in today's research is vitally important to address the most fundamental question - how the phosphorylation events control most, if not all, of the cellular processes in a given organism? Despite the immense importance of phosphorylation, the analysis of phosphoproteins on a proteome-wide scale remains a formidable challenge. Nevertheless, several technologies have been developed, mostly in yeast and mammals, to conduct a large-scale phosphoproteomic study. Some of these technologies have been successfully applied to plants with a few modifications, resulting in documentation of phosphoproteins, phosphorylation site mapping, identification of protein kinase substrates, etc. at the global level. In this review, we summarize in vitro and in vivo approaches for detection and analysis of phosphoproteins including protein kinases and we discuss the importance of phosphoproteomics in understanding plant biology. These approaches along with bioinformatics will help plant researchers to design and apply suitable phosphoproteomic strategies in helping to find answers to their biological questions.  相似文献   

6.
The transforming protein of Rous' sarcoma virus (RSV) is a phosphoprotein of Mr 60 000 (pp60src) which displays protein kinase activity specific for tyrosine residues; pp60src is associated with the plasma membrane and is recovered in the detergent-insoluble material which represents the subcellular matrix of the cell. After phosphorylation of this material of RSV-transformed cells with [gamma-32P]ATP, five phosphoproteins have been detected which are not seen in normal cells. These proteins (Mr = 135 000, 125 000, 75 000, 70 000, 60 000) contain phosphotyrosine. Their phosphorylation is strongly inhibited by anti-pp60src antibodies. In cells transformed by a temperature-sensitive mutant of RSV, these phosphoproteins, present at the permissive temperature, are no longer detected at the non-permissive temperature. It is concluded that these phosphorylations are mediated by pp60src protein kinase activity. This supports a possible role of the phosphorylation of cytoskeletal proteins in the transformation process.  相似文献   

7.
Noninsulin-dependent diabetes is associated with a decrease in the activity of sarcolemmal phosphatase 1, but no change in the activities of phosphatase 2A, 2B, or 2C. Also unaffected by diabetes were the activities of protein kinase C, cAMP-dependent protein kinase and calcium-calmodulin protein kinase. Because of the decrease in phosphatase 1 activity, 32P incorporation into sarcolemmal phosphoproteins catalyzed by either intrinsic protein kinases or extrinsic cAMP-dependent protein kinase was elevated in the diabetic. Among the proteins whose phosphorylation was elevated in diabetes was the phospholamban-like protein, which has been implicated in the regulation of ATP-dependent calcium transport. The phosphate-linked increase could be prevented by exposing the membranes to a phosphatase inhibitor and either extrinsic cAMP-dependent protein kinase or alamethicin. In addition to the phosphatase-linked effects, analysis of individual sarcolemmal phosphoproteins by SDS-polyacrylamide gel electrophoresis indicated that diabetes caused a specific elevation in membrane phosphorylation of some proteins (43 kDa and 78 kDa), but a decrease in the phosphorylation state of other phosphoproteins (31 kDa and 49 kDa). The data indicate that membrane phosphorylation is dramatically altered by diabetes. The possibility that this contributes to altered myocardial function is discussed.  相似文献   

8.
Redox-controlled thylakoid protein phosphorylation. News and views   总被引:8,自引:0,他引:8  
Thylakoid protein phosphorylation regulates state transition and PSII protein turnover under light-dependent redox control via a signal transduction system. The redox-dependent activation/deactivation of the membrane-bound protein kinase(s), mostly localized in the grana partitions, differs for the various phosphoproteins. Reduction of the plastoquinone pool may be sufficient to activate phosphorylation of few of these proteins. Phosphorylation of LHCII, requires the presence of the cytochrome bf complex in an 'activating mode' characterized by the reduction of its high potential path components and ability to interact with a reduced plastoquinol without oxidizing it. Activation and maintenance of this kinase activity is considered to involve alternate interactions with a cytochrome bf in its activating mode and with the substrate PSII(LHCII). The segregation of the thylakoid components into grana and stroma partitions appears to be mandatory for the kinase activation process. The protein substrate specificity and kinetics differs for various kinases. The thylakoid redox-controlled kinase(s) have not yet been isolated. Preparations highly enriched in kinase activity capable to phosphorylate LHCII and PSII core proteins, contain two kinase active bands, resolved by denaturing electrophoresis and renaturation, and having apparent molecular masses of about 53 and 66 kDa. The roughly estimated abundance of these putative kinase(s) in the grana partitions may be compatible with a ratio of kinase(s): PSII(LHCII) dimers:cytochrome bf dimers in the range of 1:60:30 and a ratio of kinase:phosphorylation sites of about 1:2000. Only about 10–20% of these sites are phosphorylated during state transition. The low turnover rate of the LHCII kinase(s) (< 5) may be due to hindrance of the required random lateral migration within the grana domain rich in tightly packed PSII(LHCII) and cytochrome bf complexes.  相似文献   

9.
Summary Plasmodium berghei derived phosphoproteins are associated with the host erythrocyte membrane. Effectors of the phosphorylation reaction regulate the phosphorylation of the P. berghei derived proteins and spectrin in a similar manner. The spectrin kinase also phosphorylates the P. berghei phosphoproteins in a reconstituted reaction at the same site(s) as the endogenously phosphorylated proteins. These results indicate that a host protein kinase may regulate parasite phosphoproteins during malaria.Abbreviations 2,3-DPG 2,3-diphosphoglyceric acid - SDS Sodium Dodecyl Sulfate  相似文献   

10.
11.
Following brief synaptic stimulation, the bag cell neurons in the abdominal ganglion of Aplysia undergo a series of changes in electrophysiological and secretory properties that triggers egg laying behavior. Activation of protein kinase C appears to play an important role in these changes and, in particular, causes the unmasking of a new species of voltage-dependent calcium channel. We have now used isolated bag cell neurons maintained in cell culture to study changes in protein phosphorylation that are induced by exposure to an activator of protein kinase C. Primary cultures of bag cell neurons were labeled with 32P orthophosphate and then incubated with either tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C, or with an inactive phorbol ester. When protein extracts were separated with 2D electrophoresis approximately 100 phosphoproteins could be distinguished. Only four of these proteins, with molecular weights of 20, 32, 200, and 250 kD, underwent a reproducible increase in the extent of phosphorylation of at least twofold in response to TPA. TPA-induced changes in phosphate incorporation were blocked by pretreatment with the protein kinase C inhibitor H7. One of the TPA-regulated phosphoproteins was localized in a plasma membrane-containing fraction and was sensitive to trypsin treatment of intact cells, suggesting that it is a membrane protein with sites exposed to the extracellular medium. Two of the other TPA-regulated phosphoproteins may be associated with the inner face of the plasma membrane. Our results indicate that only a small number of proteins undergo a major change in phosphorylation state following the activation of protein kinase C in isolated bag cell neurons. One or more of these proteins may contribute to the unmasking of the calcium channels.  相似文献   

12.
Administration of T3 (20 micrograms/100 g BW) for 3 days increases phosphorylation of several proteins in rat liver cytosol in vitro. To help elucidate the mechanism of T3-induced phosphorylation, we studied which protein kinase(s) mediate phosphorylation of endogenous cytosolic proteins. Five different protein kinases were obtained by DEAE+ cellulose column chromatographic fractionation of liver cytosol. When their ability to phosphorylate heat-inactivated cytosol was investigated, casein kinase, a cAMP independent protein kinase, showed the strongest effect. Casein kinase, purified by phosphocellulose chromatography, phosphorylated more than 10 cytosolic proteins. Several T3-dependent (and cAMP independent) phosphoproteins were included among these. One protein with Mr 39 X 10(3), of which phosphorylation is stimulated by T3 within five hours after injection, was the most active substrate for casein kinase. The results suggest that casein kinase is the enzyme responsible for phosphorylation of many rat liver cytosolic proteins and that several phosphoproteins, apparently under T3-regulation, might be phosphorylated by this enzyme.  相似文献   

13.
Abstract: In the present investigation, in vitro phosphorylation of CNS proteins of the silkworm Bombyx mori during the postembryonic development have been studied. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of phosphorylated proteins revealed the presence of major phosphoproteins of 59/60 kDa. Based on molecular mass, calcium/calmodulin-dependent autophosphorylation, substrate specificity, KN-62 inhibition, apparent K m for ATP and syntide-2, these proteins were identified as calcium/calmodulin-dependent protein kinase II (CaM kinase II). Anti-rat CaM kinase II monoclonal antibody showed immunoreactivity with Bombyx CaM kinase II isoforms. This kinase showed a high degree of autophosphorylation in neural tissue. During postembryonic development of Bombyx , two distinct peaks of enzyme activity could be noticed, one at the late-larval and another at the late-pupal stage, which were associated with an increase in amount of the enzyme. These results suggested that the expression of CaM kinase II in the CNS of Bombyx was developmentally regulated.  相似文献   

14.
We have examined the effect of bradykinin (BK) and other peptide mediators with related cellular actions on tyrosine phosphorylation in confluent Swiss 3T3 fibroblast cells using an anti-phosphotyrosine antibody. Immunoblots of extracts from cells stimulated with BK showed a major heterogeneous band centered at Mr 120,000. Three phosphorylated protein species were present within this band. The lower of these three phosphoproteins was occasionally present under basal conditions. The detection of this group of phosphoproteins by the antibody was prevented by coincubation with an excess of phosphotyrosine but not with an excess of phosphoserine or phosphothreonine. The BK-promoted increase in phosphorylation was rapid and transient with the peak response apparent following BK exposure for 1 min. The response was dose-dependent with half-maximal effect occurring at 10-30 nM BK. The antagonist Arg0, Hyp3, Thi5,8, D-Phe7-BK completely inhibited the response indicating that BK was acting via a B2 kinin receptor. Bombesin, at 0.1 microM, stimulated an increase in phosphorylation of the 120-kDa group of proteins with the same efficacy as 0.1 microM BK. On the other hand, 1 microM vasopressin was considerably less efficaceous than either of the former agonists. Short-term preexposure to 0.1 microM 12-O-tetradecanoyl-phorbol-13-acetate (1 min), a protein kinase C stimulator, or 30 microM H7 (15 min), a protein kinase C inhibitor, had no significant effect either on the basal or BK-promoted increase in tyrosine phosphorylation of these proteins. BK also stimulated inositol phosphate formation in these cells. Genistein, a tyrosine kinase inhibitor, inhibited BK stimulation of tyrosine phosphorylation. In addition, genistein partially inhibited BK stimulation of inositol phosphate formation. These results show that an increase in tyrosine phosphorylation of a 120-kDa group of proteins is an early protein kinase C-independent cellular signal elicited by both bradykinin and bombesin.  相似文献   

15.
Protein Phosphorylation and Neuronal Function   总被引:25,自引:13,他引:12  
Studies in the past several years have provided direct evidence that protein phosphorylation is involved in the regulation of neuronal function. Electrophysiological experiments have demonstrated that three distinct classes of protein kinases, i.e., cyclic AMP-dependent protein kinase, protein kinase C, and CaM kinase II, modulate physiological processes in neurons. Cyclic AMP-dependent protein kinase and kinase C have been shown to modify potassium and calcium channels, and CaM kinase II has been shown to enhance neurotransmitter release. A large number of substrates for these protein kinases have been found in neurons. In some cases (e.g., tyrosine hydroxylase, acetylcholine receptor, sodium channel) these proteins have a known function, whereas most of these proteins (e.g., synapsin I) had no known function when they were first identified as phosphoproteins. In the case of synapsin I, evidence now suggests that it regulates neurotransmitter release. These studies of synapsin I suggest that the characterization of previously unknown neuronal phosphoproteins will lead to the elucidation of previously unknown regulatory processes in neurons.  相似文献   

16.
Phosphoproteins in rice were detected by in vitro protein phosphorylation followed by two-dimensional polyacrylamide gel electrophoresis. Forty-four phosphoproteins were detected on a 2D-gel after in vitro protein phosphorylation of the crude extract from rice leaf sheath. Among the phosphoproteins detected, 42 were identified through analysis by Q-TOF MS/MS and/or MALDI-TOF MS. The largest percentage of the identified phosphoproteins are involved in signaling (30%), while 18% are involved in metabolism. When rice seedlings were treated with various hormones and stresses, it was observed that the phosphorylation of 13 proteins was enhanced differentially by different hormone and stress treatments. Furthermore, when the hormone/stress regulated phosphoproteins are compared in rice leaf sheath, leaf blade and root, only cytoplasmic malate dehydrogenase was found to be phosphorylated in all the tissues. Results suggest that in the phosphorylation cascade of rice, glycolytic metabolism processes and Ca(2+)-signaling seem to be important targets in response to hormones and stresses. Furthermore, the direct visualization of phosphoproteins by (32)P-labeling and their mass spectrometric identification provides an accurate and reliable method of analyzing the rice phosphoproteome.  相似文献   

17.
The role of second messengers in the regulation of protein phosphorylation was studied in microvessels isolated from rat cerebral cortex. The phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the kinetics of 32P incorporation into specific protein substrates were evaluated by computer-aided x-ray film densitometry. With the use of this method, Ca2+-calmodulin (CAM)-, Ca2+/phospholipid (PK C)-, cyclic GMP (cGMP)-, and cyclic AMP (cAMP)-dependent protein kinases were detected. CAM-dependent protein kinase proved to be the major phosphorylating enzyme in the microvascular fraction of the rat cerebral cortex; the activity of cGMP-dependent protein kinase was much higher than that of the cAMP-dependent one. Autophosphorylation of both the alpha- and beta-subunits of CAM-dependent protein kinase and the proteolytic fragment of the PK C enzyme was also detected. The kinetics of phosphorylation of the individual polypeptides indicate the presence in the cerebral endothelium of phosphoprotein phosphatases. The phosphorylation of proteins in the cerebral capillaries was more or less reversible; the addition of second messengers initiated a very rapid increase in 32P incorporation, followed by a slow decrease. Because the intracellular signal transducers like Ca2+ and cyclic nucleotides are frequently regulated by different vasoactive substances in the endothelial cells, the modified phosphorylation evoked by these second messengers may be related in vivo to certain changes in the transport processes of the blood-brain barrier.  相似文献   

18.
Small molecule inhibitors of cyclin-dependent kinase 5 (CDK5) protect neurons from cell death following various insults. To elucidate the cellular mechanism of action we investigated changes in protein phosphorylation in cultured rat cerebellar granule neurons after administration of the CDK5 inhibitor Indolinone A. By immunoblot analysis we detected enhanced phosphorylation of the extracellular signal-regulated kinase1/2 (ERK1/2) and the Jun N-terminal kinase (JNK) substrate c-Jun. Co-administration of U0126, an inhibitor of ERK1/2, or SP600125, an inhibitor of JNK, blocked phosphorylation of ERK1/2 or c-Jun, but did not affect neuroprotection by the CDK5 inhibitor. By metal affinity chromatography, two-dimensional (2D) gel electrophoresis, and MALDI-TOF mass spectrometry we identified several phosphoproteins that accumulated in neurons treated with Indolinone A. Among them were proteins involved in neurotransmitter release, which is consistent with a physiological function of CDK5 in synaptic signaling. Moreover, we identified proteins acting in energy metabolism, protein folding, and oxidative stress response. Similar findings have been reported in yeast following inhibition of Pho85 kinase, which is homologous to mammalian CDK5 and acts in environmental stress signaling. These results suggest that inhibition of CDK5 activates stress responsive proteins that may protect neurons against subsequent injurious stimuli.  相似文献   

19.
The eukaryotic translation initiation factor 4G (eIF4G) proteins play a critical role in the recruitment of the translational machinery to mRNA. The eIF4Gs are phosphoproteins. However, the location of the phosphorylation sites, how phosphorylation of these proteins is modulated and the identity of the intracellular signaling pathways regulating eIF4G phosphorylation have not been established. In this report, two-dimensional phosphopeptide mapping demonstrates that the phosphorylation state of specific eIF4GI residues is altered by serum and mitogens. Phosphopeptides resolved by this method were mapped to the C-terminal one-third of the protein. Mass spectrometry and mutational analyses identified the serum-stimulated phosphorylation sites in this region as serines 1108, 1148 and 1192. Phosphoinositide-3-kinase (PI3K) inhibitors and rapamycin, an inhibitor of the kinase FRAP/mTOR (FKBP12-rapamycin-associated protein/mammalian target of rapamycin), prevent the serum-induced phosphorylation of these residues. Finally, the phosphorylation state of N-terminally truncated eIF4GI proteins acquires resistance to kinase inhibitor treatment. These data suggest that the kinases phosphorylating serines 1108, 1148 and 1192 are not directly downstream of PI3K and FRAP/mTOR, but that the accessibility of the C-terminus to kinases is modulated by this pathway(s).  相似文献   

20.
1. Proteins of different regions of the Hirudo medicinalis central nervous system have been analyzed by means of two-dimensional electrophoresis. 2. Subcellular distribution of phosphoproteins has been studied in leech segmental ganglia. 3. Phorbol 12,13-dibutyrate, a protein kinase C activator, stimulates the phosphorylation of a number of proteins whose isoelectric points and mol. wts are presented. 4. Putative roles for these phosphoproteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号