首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene for the D-mandelate dehydrogenase (D-ManDH) of Enterococcus faecalis IAM10071 was isolated by means of an activity staining procedure and PCR and expressed in Escherichia coli cells. The recombinant enzyme exhibited high catalytic activity toward various 2-ketoacid substrates with bulky hydrophobic side chains, particularly C3-branched substrates such as benzoylformate and 2-ketoisovalerate, and strict coenzyme specificity for NADH and NAD(+). It showed marked sequence similarity with known NADP-dependent 2-ketopantoate reductases (KPR). These results indicate that together with KPR, D-ManDH constitutes a new family of D-2-hydroxyacid dehydrogenases that act on C3-branched 2-ketoacid substrates with various specificities for coenzymes and substrates.  相似文献   

2.
Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure recombinant Escherichia coli enzyme, we show that the isomerization reaction has a highly unfavourable equilibrium constant. The reductase activity is shown to be relatively nonspecific and is capable of utilizing a variety of 2-ketoacids. The active site of the enzyme contains eight conserved polar amino acids and we have mutated each of these in order to dissect their contributions to the isomerase and reductase activities. Several mutations result in loss of the isomerase activity with retention of reductase activity. However, none of the 17 mutants examined have the isomerase activity only. We suggest a reason for this, involving direct reduction of a transition state formed during the isomerization, which is necessitated by the unfavourable equilibrium position of the isomerization. Our mechanism explains why the two activities must occur in a single active site without release of a 2-ketoacid and provides a rationale for the requirement for NADPH by the isomerase.  相似文献   

3.
To investigate one potential mechanism whereby physical training improves the plasma concentration of ketone bodies in experimental diabetes mellitus, we measured the activity of 3-ketoacid CoA-transferase, the key enzyme in the peripheral utilization of ketone bodies. Diabetes was induced with streptozotocin (50 mg/kg) and training carried out on a treadmill with a progressive 10-wk program. Diabetes resulted in an increase (P < 0.001) in plasma concentration of beta-hydroxybutyric acid in sedentary rats, which was partly reversed by training (P < 0.001). Diabetes was also associated with a decreased activity of 3-ketoacid CoA-transferase in gastrocnemius muscle. When expressed per total gastrocnemius, training increased the activity of 3-ketoacid CoA-transferase by 66% in nondiabetic rats (P < 0.001) and by 150% in diabetic rats (P < 0.001), the decrease present in diabetic rats being fully reversed by training. Simple linear regression between the log of 3-ketoacid CoA-transferase activity and the log of plasma beta-hydroxybutyric acid levels showed a statistically significant (r = 0.563, P < 0.001) negative correlation. The beneficial effects of training on plasma ketone bodies in diabetic rats are probably explained, at least in part, by an increase in ketone body utilization, mediated by an increase in skeletal muscle 3-ketoacid CoA-transferase activity.  相似文献   

4.
Replacement of Tyr52 with Val or Ala in Lactobacillus pentosus d-lactate dehydrogenase induced high activity and preference for large aliphatic 2-ketoacids and phenylpyruvate. On the other hand, replacements with Arg, Thr or Asp severely reduced the enzyme activity, and the Tyr52Arg enzyme, the only one that exhibited significant enzyme activity, showed a similar substrate preference to the Tyr52Val and Tyr52Ala enzymes. Replacement of Phe299 with Gly or Ser greatly reduced the enzyme activity with less marked change in the substrate preference. Except for the Phe299Ser enzyme, these mutant enzymes with low catalytic activity consistently stimulated NADH oxidation in the absence of 2-ketoacid substrates. However, the double mutant enzymes, Tyr52Arg/Phe299Gly and Tyr52Thr/Phe299Ser, did not exhibit synergically decreased enzyme activity or the substrate-independent NADH oxidation, but rather increased activities toward certain 2-ketoacid substrates. These results indicate that the coordinative combination of amino acid residues at two positions is pivotal in both the functional recognition of the 2-ketoacid side chain and the protection of the bound NADH molecule from the solvent. Multiplicity in such combinations appears to provide d-LDH-related 2-hydroxyacid dehydrogenases with a great variety of catalytic and physiological functions.  相似文献   

5.
The herbicide suphometuron methyl inhibits the utilization of pyruvate and 2-ketobutyrate by the branched-chain amino acid biosynthetic enzyme acetolactate synthase. Eighteen insertions of the transposon Tn10 into the genome of Salmonella typhimurium LT2 caused hypersensitivity to this herbicide. Five of these insertions conferred a partial auxotrophic requirement. Concurrent herbicide sensitivity and heat-labile pantothenate auxotrophy was due to panD::Tn10 mutations, while coincident sulphometuron methyl sensitivity and thiamin auxotrophy was attributable to thiA::Tn10 mutations. The phenotypes of these mutations suggested that coenzyme A and thiamin pyrophosphate availability modulated the cells' response to sulphometuron methyl. A model suggesting a key role for 2-ketobutyrate accumulation in herbicide action is supported by the function of thiamin pyrophosphate in 2-ketoacid metabolism and the known role of a 2-ketoacid in coenzyme A synthesis.  相似文献   

6.
Acetolactate synthase (ALS), the first enzyme in the biosynthetic pathway of leucine, valine, and isoleucine, is the biochemical target of different herbicides. To investigate the effects of repression of ALS activity through antisense gene expression we cloned an ALS gene from potato (Solanum tuberosum L. cv Desiree), constructed a chimeric antisense gene under control of the cauliflower mosaic virus 35S promoter, and created transgenic potato plants through Agrobacterium tumefaciens-mediated gene transfer. Two regenerants revealed severe growth retardation and strong phenotypical effects resembling those caused by ALS-inhibiting herbicides. Antisense gene expression decreased the steady-state level of ALS mRNA in these plants and induced a corresponding decrease in ALS activity of up to 85%. This reduction was sufficient to generate plants almost inviable without amino acid supplementation. In both ALS antisense and herbicide-treated plants, we could exclude accumulation of 2-oxobutyrate and/or 2-aminobutyrate as the reason for the observed deleterious effects, but we detected elevated levels of free amino acids and imbalances in their relative proportions. Thus, antisense inhibition of ALS generated an in vivo model of herbicide action. Furthermore, expression of antisense RNA to the enzyme of interest provides a general method for validation of potential herbicide targets.  相似文献   

7.
《Gene》1998,212(2):213-219
These studies were designed to demonstrate the structural and functional similarity of murine branched chain α-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain α-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain α-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system.  相似文献   

8.
When the amino-acid mixture of an effective chemically defined diet was replaced by single amino acids, keeping the total nitrogen at the same level, the egg production of Dacus oleae was minimal with all the 19 amino acids tested. Male survival was adversely affected by the amino acids : alanine, aspartic acid, glutamic acid, glycine, hydroxyproline, lysine, serine and tyrosine, while female survival was shortened when the amino acids : glycine, hydroxyproline and lysine were added. The creation of amino-acid imbalances, by deleting the 19 amino acids individually, from the complete amino-acid mixture, showed that the amino acids : arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophane and valine were indispensable to the adult Dacus oleae flies, as far as egg production is concerned. Survival of the male flies was significantly shortened when the amino acids : alanine, hydroxyproline and tryptophane were omitted. Significant differences in longevity between males and females were scored, when the amino acids : alanine, aspartic acid, cystine, glycine and tryptophane, were omitted.  相似文献   

9.
Valeric acid and 2-methylbutyric acid serve as chemical intermediates for a variety of applications such as plasticizers, lubricants and pharmaceuticals. The commercial process for their production uses toxic intermediates like synthesis gas and relies on non-renewable petroleum-based feedstock. In this work, synthetic metabolic pathways were constructed in Escherichia coli for the renewable production of these chemicals directly from glucose. The native leucine and isoleucine biosynthetic pathways in E. coli were expanded for the synthesis of valeric acid and 2-methylbutyric acid (2MB) respectively by the introduction of aldehyde dehydrogenases and 2-ketoacid decarboxylases. Various aldehyde dehydrogenases and 2-ketoacid decarboxylases were investigated for their activities in the constructed pathways. Highest titers of 2.59 g/L for 2-mthylbutyric acid and 2.58 g/L for valeric acid were achieved in shake flask experiments through optimal combinations of these enzymes. This work demonstrates the feasibility of renewable production of these high volume aliphatic carboxylic acids.  相似文献   

10.
The single amino acid replacement of Tyr52 with Leu drastically increased the activity of Lactobacillus pentosus NAD-dependent D-lactate dehydrogenase toward larger aliphatic or aromatic 2-ketoacid substrates by 3 or 4 orders of magnitude and decreased the activity toward pyruvate by about 30-fold, converting the enzyme into a highly active D-2-hydroxyisocaproate dehydrogenase.  相似文献   

11.
The role of Asp51 in the catalytic activity of glutamine synthetase from the cyanobacterium Anabaena azollae has been analyzed. Five mutant enzymes, D51S, D51A, D51E, D51N and D51R, were constructed by site-directed mutagenesis and characterized. Asp51 appears to participate in the binding of ammonium ion, as affinity for this substrate was affected in all cases, although it varied according to the charge and/or size of the amino-acid residue, decreasing in the order Glu > Asn > Ser > Ala. The replacement of Asp51 by Glu (D51E) conferred besides a high resistance to the herbicides L-methionine-DL-sulfoximine and phosphinothricin, as a result of a decreased phosphorylation ability.  相似文献   

12.
光学活性丙氨酸和叔亮氨酸的不对称合成   总被引:3,自引:0,他引:3  
α-酮酸1a-b与R-或S-α-苯乙胺反应,然后经过还原和氢解,生成光学活性的丙氨酸(4a)和叔亮氨酸(4b)。当采用Pd/C催化氢化和NaBH4还原时的立体选择性不同。在NaBH4还原的条件下,e.e.值达80%以上。  相似文献   

13.
Two forms of NAD-dependent D-mandelate dehydrogenase (D-ManDHs) were purified from Enterococcus faecalis IAM 10071. While these two enzymes consistently exhibited high activity toward large 2-ketoacid substrates that were branched at the C3 or C4 position, they gave distinctly different K(m) and V(max) values for these substrates and had distinct molecular weights by gel electrophoresis and gel filtration.  相似文献   

14.
When nitrogen-starved mycelium of Penicillium chrysogenum is incubated with relatively high concentrations of labeled hydrophobic amino acids, influx is followed by efflux of the corresponding labeled α-ketoacid. In spite of the efflux, further transport activity is suppressed. Cell-free extracts contain a transaminase that accepts all those amino acids exhibiting α-ketoacid efflux. Transaminase activity is constitutive but is induced to a 2- to 3-fold higher level during a 2-hr preincubation period with a hydrophobic amino acid. Cycloheximide prevents efflux and also the induction of the transaminase. Cycloheximide itself stimulates a partial decay in transport activity but mycelium preincubated with l-leucine and cycloheximide together retain a greater fraction of the original transport activity than mycelium preincubated with l-leucine alone. The results suggest that transport is regulated partially by transinhibition but a significant part of the substrate-induced decay of transport activity is caused by either (a) the degradation of a permease component (perhaps facilitated by transinhibition), or (b) the induction by the substrate of a regulator protein (perhaps the transaminase).The uptake of labeled substrates by nutrient sufficient mycelium correlates well with lipid solubility of the substrates. This suggests that the nonsaturable uptake observed in these mycelia results from free diffusion of the uncharged species.  相似文献   

15.
Synthetic biology provides a significant platform in creating novel pathways/organisms for producing useful compounds, while it remains a challenge to enhance the production efficiency. Recently we constructed a recombinant Escherichia coli for glutarate production using a synthetic α-ketoacid reduction pathway, in which α-ketoglutarate is reduced to 2-hydroxyglutarate then converted to glutarate. However, the production titer was low, which may be due to 1) oxygen-sensitive nature of 2-hydroxyglutaryl-CoA dehydratase (HgdABC) and 2) limited cell growth in anaerobic cultivation. Therefore, we developed an aerobic-anaerobic two-stage strategy by growing more cells aerobically, then shifting to anaerobic cultivation to ensure the functional HgdABC for glutarate biosynthesis. The two-stage cultivation resulted in higher production of glutarate and other two C5 dicarboxylic acids – glutaconate and 2-hydroxylglutarate than the original anaerobic process. Furthermore, we used an anaerobically-inducible nar promoter to improve the hgdABC expression responding to aerobic-anaerobic shift. Finally, the glutarate, glutaconate and 2-hydroxyglutarate titer was increased about 2, 5 and 3 times, reaching 11.6, 108.8 and 399.5 mg/L, respectively. The work demonstrated an effective strategy for ameliorating α-ketoacid reduction pathway to produce C5 dicarboxylic acids, as well as the potential of integration of bioprocess and metabolic engineering for enhancing chemicals production by an engineered microorganism.  相似文献   

16.
17.
The mitotic kinases Aurora-A and Aurora-B have similar amino-acid sequences but are differently localised and regulated during cell division. The basis for their interactions with different and specific regulators is unclear. Surprisingly, our recent structural studies indicate that TPX2 regulates Aurora-A activity by binding at a site that is conserved almost completely on Aurora-B. Here we investigate molecular determinants of TPX2-Aurora-A recognition. Using structure-based mutagenesis, we show that a single amino-acid difference on the surface of the kinase catalytic domain is key to the precision with which TPX2 discriminates between Aurora-A and Aurora-B. The conservation at this amino-acid position suggests that this discriminatory mechanism is likely to be conserved in higher eukaryotes.  相似文献   

18.
Determinants for Aurora-A activation and Aurora-B discrimination by TPX2   总被引:1,自引:0,他引:1  
The mitotic kinases Aurora-A and Aurora-B have similar amino-acid sequences but are differently localised and regulated during cell division. The basis for their interactions with different and specific regulators is unclear. Surprisingly, our recent structural studies indicate that TPX2 regulates Aurora-A activity by binding at a site that is conserved almost completely on Aurora-B. Here we investigate molecular determinants of TPX2-Aurora-A recognition. Using structure-based mutagenesis, we show that a single amino-acid difference on the surface of the kinase catalytic domain is key to the precision with which TPX2 discriminates between Aurora-A and Aurora-B. The conservation at this amino-acid position suggests that this discriminatory mechanism is likely to be conserved in higher eukaryotes.  相似文献   

19.
The two protamines of human sperm cell nuclei, P1 and P2, were isolated in pure form after extraction with 6M guanidine/5% mercaptoethanol and alkylation with vinyl pyridine by reversed-phase high-performance liquid chromatography. The amino-acid sequence of protamine P1 was determined by analysing the intact protein and the fragments obtained by cyanogen bromide cleavage. Out of the 50 amino-acid residues 24 are arginines and 6 are cysteines. The sequence of protamine P2 was determined by analysing the intact protein and the fragments resulting from cleavage with endoproteinase Lys-C and thermolysin. Protamine P2 was found to occur in two forms which only differ in their N-terminal regions. The form P2' is three amino-acid residues longer at the N-terminus than the form P2'. Out of the 57 amino-acid residues in the longer form 27 are arginines and 5 are cysteines. Human protamine P1 is highly homologous with the protamines isolated from bull, boar, ram and mouse sperm cells, but human protamine P2 shows a novel type of structure, although also here the dominant amino acids are arginine and cysteine.  相似文献   

20.
A cDNA clone, pHGR81, encoding 358 amino-acid residues of the C-terminal region of human elongation factor 2 (EF-2), was isolated from a human ovarian granulosa cell cDNA library. The deduced amino-acid sequence of pHGR81, when compared with the known identical amino-acid sequences of hamster as well as rat EF-2 revealed a substitution of a glutamine by an alanine residue in the partially determined human sequence. The 15 amino-acid-residue sequence comprising the histidine-715, supposed to be of importance for the biological function of EF-2, is preserved in human EF-2. The coding region of the cDNA insert of pHGR81 displays a homology of 87% to hamster and of 88% to rat EF-2 cDNA. In Northern-transfer analysis, pHGR81 specifically hybridizes with an mRNA species of 3.1 kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号