首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kinetic properties of cholinergic desensitization in Aplysia neurons   总被引:1,自引:0,他引:1  
The kinetic properties of desensitization onset of excitatory cholinergic responses were studied in isolated, voltage-clamped Aplysia neurons. Desensitization of the acetylcholine (ACh)-induced current in response to microperfused acetylcholine occurred in two phases, and was best modelled as the sum of two exponential components plus a constant. Both exponential components were accelerated by increasing ACh dose. At the higher ACh doses the current decline was dominated by the fast exponential component, and the ratio of the plateau-peak current was reduced. Over the range of membrane potentials -50 to -110 mV, no change in the kinetics of desensitization onset was observed. The mean time constants of both exponential components were doubled by cooling from 20 degrees C to 5 degrees C. These results demonstrate that, as at the vertebrate neuromuscular junction, the onset of desensitization of this ACh response involves at least two processes which are dose- and temperature-sensitive. The lack of voltage dependence contrasts with results from vertebrate preparations, and indicates a fundamental difference between the properties of the excitatory ACh response in Aplysia neurons and the vertebrate neuromuscular junction.  相似文献   

3.
Glutamate and GABA-receptor channels were investigated in explants of rat cerebellum grown in cell culture. The patch-clamp technique was used to examine neurons under whole cell clamp and the properties of channels were derived by analysis of glutamate and GABA-evoked current noise. In addition, single channel currents activated by glutamate were recorded from isolated outside-out patches of membrane. We found evidence for at least two types of glutamate receptor-channels in cerebellar cells. Some neurons exhibited a channel of 50 pS conductance with a Lorentzian noise spectrum of 5.9 ms time constant. Single channels were readily resolved both in whole cell clamp and excised patches. Other neurons possessed low conductance channels which produced two component spectra. Estimates of the single channel conductance gave a value of about 140 fS. GABA channel noise obtained from these cells was also fitted by two component spectra which gave single channel conductance of 16 pS.  相似文献   

4.
The discharge of Aplysia pacemaker neurons varies with temperature over the range 10 to 22°C. Three types of frequency-temperature plots are found, with maximal discharge at lowest, intermediate or highest temperatures. In the presence of ouabain, however, all cells show maximal discharge at the highest temperature, suggesting that the steady state activity of an electrogenic sodium pump is an important determinant of membrane excitability. The average magnitude of pump current, as indicated by the applied current necessary to restore discharge to control values after ouabain application, was about 4 namps at 20°C but near zero at 10°C. These neurons may be excellent models of mammalian thermoreceotprs.  相似文献   

5.
6.
Y Ikemoto  N Akaike  K Ono 《Life sciences》1988,42(16):1557-1564
The primary site of anesthetic action remains controversial. In addition to non-specific actions of hydrophobic substances on the membrane, specific effects of volatile anesthetics on neuronal activity have been reported. In the present study, effects of enflurane on the chloride currents (ICl) induced by L-glutamic acid (Glu) and acetylcholine (ACh) in isolated Aplysia neurons were examined, using the 'concentration clamp' technique. Enflurane increased the peak amplitude of the ICl induced by low concentrations of Glu but decreased those evoked by higher concentrations of the agonist. The anesthetic accelerated both activation and desensitization phases of the Glu-induced ICl. On the other hand, the ACh-induced ICl in the same neuron was depressed in an uncompetitive manner in the presence of enflurane. The desensitization phase was not affected, although the activation phase became more rapid and the mean open time obtained by noise analysis was shortened. These results suggest the existence of specific steps in the process of activation and desensitization of channels, at which the volatile anesthetic exerts differential effects on the postsynaptic currents.  相似文献   

7.
8.
Taurine-activated currents were investigated in rat cerebellar neurons using techniques of voltage clamping at the membrane and intracellular perfusion. Activation of both chloride and calcium conductance at the membrane were produced by applying taurine to the membrane surface. The dose-response curve for taurine-activated current is in the 1×10–4–1×10–1 M concentration region. The dissociation constant of the taurine-receptor complex equals 2×10–3 M. Activation of taurine-induced currents is a cooperative process: Hill's coefficient –2. It was found that bicuculline and strychnine exert a blocking action on taurine-activated currents, while pentobarbital and oxazepam potentiate taurine action.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 6, November–December, 1990, pp. 780–786.  相似文献   

9.
The blocking action ofNephila clavata spider neurotoxin, or JSTX, on ionic currents activated by L-glutamate and its agonists when applied to the membrane of neurons isolated from the rat hippocampus was investigated using a concentration clamp technique. Crude JSTX venom was found to block L-glutamate-, quisqualate, and kainate-activated ionic currents induced by activating non-N-methyl-D-aspartate (non-NMDA) membrane receptors. Following the effects of JSTX, ionic currents activated by L-glutamate and its agonists declined to 34–36% of their initial value with no recovery during JSTX washout. An active fraction of JSTX at concentrations of 10–4–10–5 produced almost total but partially reversible blockade of ionic currents. The action of JSTX became less effective during depolarization. The concentration dependence of JSTX-induced blockade of kainate-activated ionic currents was investigated and the velocity constants of interaction between the toxin and glutamate receptors obtained. It is postulated that JSTX interacts with chemically-operated non-NMDA ionic channels, blocking their transition into a number of their possible open states.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 152–160, March–April, 1989.  相似文献   

10.
Continued exposure of many beta-adrenoceptor-coupled adenylate cyclase systems to high doses of agonist causes diminished responsiveness, a phenomenon called desensitization. After exposure of isolated guinea pig tracheae to a high concentration of isoproterenol for 30 min, relaxation produced by subsequent challenge by a lower concentration was attenuated, as expected. However, potentiation of isoproterenol-induced relaxation by aminophylline was greater after desensitization as compared to that prior to desensitization. This observation was further investigated using a graphical method that allows quantitative and statistical evaluation of combinations of synergistically acting drugs. Concentration-relaxation curves (CRC) for isoproterenol alone and in the presence of a fixed concentration of aminophylline were determined in isolated rat trachea. A theoretical additive curve was constructed from the data obtained, and the displacement of the isoproterenol CRC from the theoretical additive curve caused by aminophylline in tracheae desensitized by 2.5 hr of exposure to 2 X 10(-5) M isoproterenol (DESN) was compared to that in tracheae equilibrated for a similar period in physiologic salt solution (CON). Desensitization had no significant effect on aminophylline-induced relaxation but caused a marked depression and right-shift of the isoproterenol CRC. In the CON group aminophylline shifted the isoproterenol CRC upward and to the left indicating that the synergistic interaction between the two agents was greater than additive. The left-shift and elevation of the ceiling effect of the isoproterenol CRC caused by aminophylline were significantly greater in the DESN group vs the CON group. These observations from intact tissue are compared with published data from biochemical and broken cell studies. The possibility of increased phosphodiesterase activity as an explanation for the observations reported is discussed.  相似文献   

11.
Lu CY  Si JQ  Li ZW 《生理学报》1998,50(4):373-378
本文应用全细胞膜片箝技术在新鲜分离的大鼠背根神经节(DRG)神经元上研究缓激肽(BK)对γ-氨基丁酸(GABA)反应的调制作用。结果发现:在34个对GABA反应的细胞中有31个细胞对BK敏感。在对BK敏感并引起内向电流的27个细胞中预加BK,对GABA-激活电流具有明显的抑制作用,如10^-6mol/L的BK可抑制GABA(10^-4mol/L)激活电流30%。BK可将GABA量效曲线明显下移,并  相似文献   

12.
The action of cerebrolysine, a biogenic stimulator, on the receptor- and voltage-gated ionic currents was studied in identifiedHelix pomatia neurons. Cerebrolysine reversibly suppressed the acetylcholine (ACh)- and glutamate (GLU)-induced chloride currents in some neurons (LP11, B4, E12) with a latency of 9±3 sec, while not affecting these currents in other neurons. The suppressing effect of cerebrolysine on the voltage-gated sodium and calcium currents was also selective. There were fast and slow phases, with latencies of 52±8 sec and 5±1 min, respectively, in the cerebrolysine effect on the voltage-gated sodium current. The effect of cerebrolysine on the sodium current during the fast suppression phase could be simulated with FMRFamide (10–5 M), while those exerted on the ACh- and GLU-induced currents could be simulated with taurine (10–6 M). The effects of cerebrolysine and the above substances were non-additive. These facts allow us to suggest that both taurine and FMRFamide (or its fragment) are involved in the mechanism of posttraumatic and postsurgical curative effects of cerebrolysine.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 190–196, May–June, 1994.  相似文献   

13.
"Fast chemical stimulation" was shown to induce potentiation of glutamate-activated currents in neurons isolated from rat hippocampus. A fast application system allowed solution changes up to a rate of 20 Hz. In Mg2(+)-free solution, the response to glutamate application immediately after repetitive stimulation with glutamate plus glycine was increased by 25%-88%, returning to control levels over 10-15 min. Enhancement of glutamate-induced currents was also seen after stimulation with solutions containing aspartate or NMDA plus glycine. Aspartate-induced currents were not potentiated. These and other observations demonstrate that in a purely "postsynaptic" system, short-term potentiation can be induced and is mediated via NMDA receptors whereas the potentiated current is carried via non-NMDA glutamate receptor channels.  相似文献   

14.
We studied the outward currents elicited by an odorous compound, isoamyl acetate, in isolated olfactory receptor neurons of the grass frog under whole-cell perforated-patch voltage-clamp recording. Odorant-induced outward currents were relatively rare, occurring in about 16% of the responding cells. Responses had smaller amplitudes and shorter time courses when compared to the more commonly found odorant-induced inward currents. There was a high correlation between odorant-induced outward current and responses evoked by either 8-(4-chlorophenylthio) adenosine 3':5'-cyclic monophosphate, a membrane-permeant cyclic adenosine monophosphate analog, or 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor. The outward current responses to all three substances increased in amplitude when the membrane potential was more negative than -60 mV and decreased in amplitude when the membrane potential was more positive. Responses were still present when the potential was held at -100 mV, indicating that the responses are not the result of a potassium conductance. Removal of external calcium from the perfusion medium abolished the outward currents. Our results indicate that the odorant-induced outward current is a calcium-dependent event that may be mediated by cyclic adenosine monophosphate.  相似文献   

15.
The peptidergic bag cell neurons of the opisthobranch mollusc Aplysia control egg laying and its correlated behavior by release of the neuroactive peptide, egg-laying hormone, during the extended electrical discharge termed afterdischarge. This paper examines the evidence for the involvement of cyclic AMP (cAMP) and protein phosphorylation in the mediation of this electrical afterdischarge. It is concluded that an important component in the mechanism of afterdischarge is the suppression of a potassium channel, mediated by cAMP-dependent protein kinase-induced protein phosphorylation. The exact identity of the potassium channel remains to be worked out.  相似文献   

16.
We have investigated the uptake and release of [3H]gamma-aminobutyric acid (GABA) by embryonic chick spinal cord cells maintained in culture. Cells dissociated from 4- or 7-d-old embryos were studied between 1 and 3 wk after plating. At 3 degrees C, [3H]GABA was accumulated by a high affinity (Km approximately equal to 4 microM) and a low affinity (Km approximately equal to 100 microM) mechanism. The high affinity transport was markedly inhibited in low Na+ media, by ouabain, at 0 degrees C, and by 2,4-diaminobutyric acid. Autoradiography, after incubation in 0.1 microM [3H]GABA, showed that approximately 50% (range = 30-70%) of the multipolar cells were labeled. These cells were neurons rather than glia; action potentials and/or synaptic potentials were recorded in cells subsequently found to be labeled. Non-neuronal, fibroblast-like cells and co-cultured myotubes were not labeled under the same conditions. The fact that not all of the neurons were labeled is consistent with the suggestion, based on studies of intact adult tissue, that high affinity transport of [3H]GABA may be unique to neurons that use GABA as a neurotransmitter. Our finding that none of fifteen physiologically identified cholinergic neurons, i.e., cells that innervated nearby myotubes, were heavily labeled after incubation in 0.1 microM [3H]GABA is significant in this regard. The newly taken up [3H]GABA was not metabolized in the short run. It was stored in a form that could be released when the neurons were depolarized in a high K+ (100 mM) medium. As expected for a neurotransmitter, the K+-evoked release was reversibly inhibited by reducing the extracellular Ca++/Mg++ ratio.  相似文献   

17.
Following brief synaptic stimulation, the bag cell neurons in the abdominal ganglion of Aplysia undergo a series of changes in electrophysiological and secretory properties that triggers egg laying behavior. Activation of protein kinase C appears to play an important role in these changes and, in particular, causes the unmasking of a new species of voltage-dependent calcium channel. We have now used isolated bag cell neurons maintained in cell culture to study changes in protein phosphorylation that are induced by exposure to an activator of protein kinase C. Primary cultures of bag cell neurons were labeled with 32P orthophosphate and then incubated with either tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C, or with an inactive phorbol ester. When protein extracts were separated with 2D electrophoresis approximately 100 phosphoproteins could be distinguished. Only four of these proteins, with molecular weights of 20, 32, 200, and 250 kD, underwent a reproducible increase in the extent of phosphorylation of at least twofold in response to TPA. TPA-induced changes in phosphate incorporation were blocked by pretreatment with the protein kinase C inhibitor H7. One of the TPA-regulated phosphoproteins was localized in a plasma membrane-containing fraction and was sensitive to trypsin treatment of intact cells, suggesting that it is a membrane protein with sites exposed to the extracellular medium. Two of the other TPA-regulated phosphoproteins may be associated with the inner face of the plasma membrane. Our results indicate that only a small number of proteins undergo a major change in phosphorylation state following the activation of protein kinase C in isolated bag cell neurons. One or more of these proteins may contribute to the unmasking of the calcium channels.  相似文献   

18.
The vanilloid receptor 1 (VR1) gene is responsible for both capsaicin-, and low threshold (LT) noxious heat-sensitivity in mammalian primary sensory neurons. Although, birds lack capsaicin-sensitivity they express LT noxious heat-sensitivity. Here, we compared LT noxious heat-activated whole-cell currents produced by rat and chicken cultured dorsal root ganglion neurons in order to find out the similarities and differences in the LT noxious heat transduction mechanisms between the two species. No significant differences between rat and chicken neurons were found in the mean cell diameter of the LT noxious heat-sensitive cells (20.4+/-0.8 microm, n=19 and 20.6+/-0.6 microm, n=11, respectively) and the average threshold (45.7+/-0.5 degrees C, n=19 and 46.1+/-0.7 degrees C, n=11, respectively) and peak amplitude (-2.9+/-0.6 nA, n=19 and -2.1+/-0.6 nA, n=11, respectively) of the heat-evoked responses. The current-voltage curves of the responses both in rat and chicken cells reversed at the same range (-19.5+/-3.8 mV, n=4 and -15.5+/-1. 2 mV, n=3, respectively) and showed strong outward rectification at negative membrane potentials. While all LT noxious heat-sensitive rat cells responded to capsaicin, none of the chicken neurons produced detectable response to it. These findings suggest that a VR1 homologue which lacks to sequence for capsaicin-sensitivity is possibly the LT noxious heat transducer in chicken.  相似文献   

19.
The adrenergic modulation of inwardly rectifying and depolarization-activated outward potassium currents was studied in single cardiac myocytes obtained from the human atrium. Membrane currents were recorded in enzymatically dissociated cells using the whole-cell voltage-clamp technique. It was observed that, in the presence or absence of atenolol (or 1 µM propranolol), 30 µM phenylephrine attenuated inwardly rectifying and depolarization-activated outward potassium currents including both transient and late-activated current. This suppressant effect of phenylephrine could be prevented by pretreatment with an -adrenoceptor antagonist. Isoproterenol (30 µM) increased the late outward potassium current and net transient outward current. It is concluded that, in human atrial myocytes, -adrenergic activation reduces depolarization-activated transient and late outward potassium current and inwardly rectifying background potassium current. -Adrenergic activation resulted in an increase in the depolarization-activated transient and late outward potassium current.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号