首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
Mitochondria play a key role in embryo development by providing energy. However, vitrification often causes mitochondrion damage of embryo, which further impairs embryo development. Therefore, the efficiency of embryo development after vitrification could be improved by protecting mitochondrial function from vitrification injury. The purpose of this study was to investigate the effects of resveratrol on mitochondrial damage after vitrification. The results showed that vitrification induced the abnormal mitochondrial distribution and damage mitochondrial function of mouse 2-cell embryos. However, co-culturing with resveratrol for 2 h could repair the abnormal mitochondrial distribution and mitochondrial dysfunction of embryos after vitrification. More than anything, the subsequent development ability of vitrified-thawed 2-cell embryos was significantly higher than that with no resveratrol treatment. In conclusion, resveratrol could protect the mitochondrial from injury caused by vitrification.  相似文献   

2.

Background

The objective of this study was to carry out a systematic review and meta-analysis of embryologic and clinical outcomes following open versus closed vitrification of human oocytes and embryos.

Methods

An electronic literature search was conducted in main electronic databases up to June 30, 2018 using the following key terms: ‘oocyte’, ‘embryo’, ‘blastocyst’, ‘vitrification’, ‘cryopreservation’, ‘device’, ‘survival rate’, ‘pregnancy rate’, etc. A meta-analysis was performed using a random effect model to estimate the value of risk ratios (RRs) and 95% confidence interval (CI). Subgroup analyses and sensitivity analyses were carried out to further confirm the results.

Results

Twelve (Eight prospective and four retrospective) studies comparing open versus closed vitrification of human oocytes or embryos were included. For prospective studies on oocytes, no evidence for a significant difference in cryosurvival rate (RR?=?0.91, 95% CI: 0.80–1.03, P?=?0.14; n?=?2048) or clinical pregnancy rate (RR?=?1.29, 95% CI: 0.80–2.06, P?=?0.30; n?=?150) was observed. Additionally, there were no significant differences between the two methods concerning secondary endpoints included positive βHCG rate, implantation rate, miscarriage rate, ongoing pregnancy rate, live birth rate, cancellation rate, babies born per transferred blastocysts, or multiple birth rate (P?>?0.05). The results of the retrospective studies were similar as the prospective studies.

Conclusions

It is still impossible to conclude that closed vitrification system could be a substitution for open system in human oocyte and embryo cryopreservation based on current evidence. Therefore, more well-designed prospective studies addressing these issues are still warranted.
  相似文献   

3.
During the last decades, many techniques have been developed to reduce sample volume and improve cooling and warming rates during embryo vitrification. The vast majority are based on the “minimum drop size” concept, in which the vitrification solution around embryos is reduced by aspiration, leaving a tiny part of volume surrounding embryos. However, novel cryodevices were aimed to remove the entire vitrification solution. This study was designed to compare the “minimum drop size” technique using Cryotop® with the nylon mesh as cryodevice on rabbit morula embryos. The outcomes assessed were the in vitro development rates (experiment 1) and the offspring rates at birth (experiment 2). Embryos were vitrified in a two-step procedure; equilibrium (10% EG + 10% Me2SO) for 2 min and vitrification (20% EG + 20% Me2SO) for 1 min. In experiment 1, embryos (n = 323) were warmed and subsequently in vitro cultured for 48 h to assess the embryo developmental capability to reach the hatching-hatched blastocyst stage. In experiment 2, embryos were transferred using the laparoscopic technique (n = 369) to assess the offspring rate at birth. In this context, rates of in vitro embryo development were similar between vitrified groups (0.73 ± 0.042% and 0.66 ± 0.047% for Cryotop® and nylon mesh device, respectively), but lower than in the fresh group (0.97 ± 0.016%, p < 0.05). In experiment 2, there were no significant differences in survival rates (offspring born/total embryos transferred) among the Cryotop® device group and fresh group (0.41 ± 0.049% and 0.49 ± 0.050%, respectively). But significantly lower value was obtained in the nylon mesh device group (0.18 ± 0.030%). These results indicate that nylon mesh is not suitable as cryodevice for rabbit morula vitrification, remaining those using the “minimum drop size” methodology as the best option.  相似文献   

4.
Vitrification is a superior method for cryopreservation of IVF embryos, but due to complicated warming protocols, it is not commonly used for commercial bovine embryos routine. To overcome the need of laboratory embryo preparation during warming, we developed an in-straw warming protocol compatible with most vitrification devices for embryo transfer without sucrose gradient steps and embryo evaluation. Surprisingly, one of the tested protocols improved embryo survival (95.0%* vs 83.1% expansion rate and 74.2%* vs 51.5% hatching rate) compared to conventional in-plate warming. Embryo quality was also increased, taken by the higher total cell numbers (160.7 ± 8.6* vs 99.0 ± 7.9) and lower apoptosis index (4.9 ± 0.6* vs 11.5 ± 2.4) 48 h after warming. Pregnancy rates were similar between vitrified-warmed embryos and fresh embryos (40% vs 43%). Based on our results, we suggest in-straw warming should always be used for vitrified embryos due to beneficial effects. Direct transfer can be safely performed using this protocol.  相似文献   

5.
The objective of this study was to evaluate the efficiency of the closed pulled straw (CPS) method for cryopreserving in vitro-produced and in vivo-produced bovine (Bos taurus) embryos. Based on the open pulled straw (OPS) protocol, the top end of a CPS was closed by tweezers (heated in a flame) to prevent the cryoprotectant medium containing embryos from contacting the liquid nitrogen. Bovine in vitro or in vivo morulae and early blastocyst embryos were frozen by slow cryopreservation, OPS vitrification, or CPS vitrification. Morphology of postthawed embryos was evaluated, and normal embryos were used for successive culture for 72 h. There were no significant differences between OPS and CPS freezing groups in postthawed in vitro-produced embryos with respect to rates of morphologically normal embryos (mean ± SD, 87.9 ± 5.2% vs. 85.4 ± 4.9%), survival at 24 h (58.0 ± 6.8% vs. 56.3 ± 4.4%), and survival at 72 h (35.2 ± 6.0% vs. 34.9 ± 6.7%). However, both OPS and CPS vitrification resulted in higher postthaw rates of morphologically normal embryo and survival at 24 and 72 h than those of the slow-freezing method (P < 0.05). Similar results were obtained for in vivo-derived embryos. We concluded that CPS vitrification was a feasible method to cryopreserve both in vitro-derived and in vivo-derived bovine embryos. This method not only eliminated the risk of embryo contamination by preventing contact with liquid nitrogen but also retained the advantages of the OPS vitrification method.  相似文献   

6.
Fish embryo cryopreservation is highly important for the long-term preservation of genomic and genetic information; however, few successful cases of fish embryo cryopreservation have been reported over the past 60 years. This is the first study to use Epinephelus moara embryos from fertilization with cryopreserved sperm as experimental material. Embryos that developed to the 16–22 somite stage and tail-bud stage were treated with the vitrification solution PMG3T according to a five-step equilibration method and cryopreserved at various temperatures and storage duration. Only 19.9 ± 9.2% of 16–22 somite stage embryos and 1.3 ± 1.1% of tail-bud stage embryos survived when cooled at 4 °C for 60 min. In total, 8.0 ± 3.0% of 16–22 somite stage embryos survived when cooled at −25.7 °C for 30 min, 22.4 ± 4.7% of tail-bud stage embryos survived after 45 min of cooling at −25.7 °C, and none survived after 60 min. Only 2.0 ± 2.7% of embryos survived when cryopreserved at −140 °C for 20 min. However, 9.7% of tail-bud stage embryos survived after cryopreservation in liquid nitrogen (−196 °C) for 2 h. Most surviving embryos developed normally. Embryonic volume decreased and spherical segments appeared when embryos were treated with higher concentrations of vitrification solution. Additionally, the volume recovered gradually after rinsing with sucrose and seawater. This is the first estimate of the survival of E. moara embryos and larvae after cryopreservation. These findings provide a foundation for further explorations of fish embryo cryopreservation techniques.  相似文献   

7.
8.
9.

Background  

The aim of our retrospective study was to compare the clinical usefulness of two non-invasive embryo scoring systems based either on a simplified pronuclear morphology of the zygote or on early cleavage rate, as well as their combination, for the selection of embryos with the best implantation potential in embryo transfer (ET).  相似文献   

10.
Kong IK  Lee SI  Cho SG  Cho SK  Park CS 《Theriogenology》2000,53(9):1817-1826
The purpose of this study was to investigate the use of a glass micropipette (GMP) as a vessel for vitrification of mouse blastocysts, and to compare the post-thaw survival of these blastocysts with those cooled in open pulled straws (OPS). The GMP vessel permits higher freezing and warming rates than OPS due to the higher heat conductivity of glass and lower mass of the solution containing the embryos. Groups of 6 mouse blastocysts were sequentially placed into 2 vitrification solutions before being loaded into either the OPS or GMP vessels and immersed into LN2 within 20 to 25 sec. Post-thaw blastocysts were serially washed in 0.25 and 0.15 M sucrose in holding medium (HM) and modified human tubal fluid medium (mHTF), each for 5 min, and then cultured in mHTF supplemented with 10% FCS for 24 h. The rate of blastocyst re-expansion did not differ significantly for OPS (93.5%) and GMP (95.0%) methods (P<0.05). The hatching rate in OPS (88.7%) was similar to that in GMP (90.0%) but was lower than for the unvitrified control embryos (98.3%, P<0.05). To determine the optimal embryo population per GMP vessel, the pipettes were loaded with 2 to 10 embryos. The rate of blastocyst re-expansion after vitrification was significant for 2 to 4 embryos than for 6 to 10 embryos per vessel. In addition, the rate of blastocyst re-expansion was significantly lower if blastocysts were vitrified in the wide rather than the narrow portion of the micropipette (100 vs 87.5%; P<0.05) even when only 4 blastocysts were loaded per vessel. These results indicate that both vitrification vessels can provide high rates of embryo survival. However, the GMP vessel does not need a cap to protect the vessel from floating after immersion in LN2. The number and location of the embryos (narrow versus wide portion of capillary) were considered to be limiting factors to the viability of mouse embryos.  相似文献   

11.
The objective was to develop a simple successful porcine cryopreservation protocol that prevented contact between embryos and liquid nitrogen, avoiding potential contamination risks. In vivo-derived blastocysts were collected surgically from donor pigs, and two porcine embryo vitrification protocols (one used centrifugation to polarize intracytoplasmic lipids, whereas the other did not) were compared using the Cryologic Vitrification Method (CVM), which used solid surface vitrification. The CVM allowed embryos to be vitrified, without any contact between embryos and liquid nitrogen. Both protocols resulted in similar in vitro survival rates (90% and 94%) and cell number (89 ± 5 and 99 ± 5) after 48 h in vitro culture of vitrified and warmed blastocysts. The protocol that did not use centrifugation was selected for continued use. To protect vitrified embryos from contact with liquid nitrogen and potential contamination during storage, a sealed outer container was developed. Use of this sealed outer container did not affect in vitro survival of cryopreserved blastocysts. In vivo blastocysts (n = 151) were collected, vitrified, and stored using the selected protocol and sealed container. These embryos were subsequently warmed and transferred to six recipients; five became pregnant and farrowed a total of 26 piglets. This embryo vitrification method allowed porcine embryos to be successfully vitrified and stored without any contact with liquid nitrogen.  相似文献   

12.
《Cryobiology》2016,72(3):499-506
The effects of cryopreservation and the vitrification solution on the embryo hatchability of the seven-band grouper Epinephelus septemfasciatus were evaluated in this study. Six small molecule cryoprotectants (PG, MeOH, Gly, DMF, DMSO and EG) and four macromolecular cryoprotectants (glucose, fructose, sucrose and trehalose) were used to determine the embryo toxicity levels. Results showed that the embryo survival rate was higher when the PM (24% PG + 16% MeOH):Gly ratios were 3:1 and 4:1. Further experiments showed that the embryo survival rates in PMG3S (35% PMG3 + 5% sucrose) and PMG3T (35% PMG3 + 5% trehalose) were relatively higher, which are 29.24 ± 10.81% and 27.01 ± 3.39%, respectively. When treated with PMG3S and PMG3T by using 5-step method, embryos at somite stage and tail-bud stage shrank in the first 6 min and gradually recovered in volume to the original. This indicated the successful permeation of the vitrification solutions into cells. Then, embryos at the embryoid body formation stage, the somite stage and the tail-bud stage were cryopreserved with PMG3S and PMG3T. In total, 82 floating embryos were obtained, 14 of which developed further, with 8 embryos at the tail-bud stage developing to the heartbeat stage, 4 embryos at the body formation stage development to the somite stage, and 2 embryos at the somite stage hatched to larval fish.  相似文献   

13.

Background  

In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin.  相似文献   

14.
In this work we analyzed the effects of three culture systems on developmental ability of bovine embryos in vitro produced with sexed sperm, the survival to vitrification (cryologic vitrification method) of such blastocysts, and their pregnancy rates after embryo transfer to recipients, both as fresh and after vitrification/warming. Finally, we measured the accuracy of the sorting protocol by a polymerase chain reaction-based method to validate the embryo sex at blastocyst stages. We confirmed an individual effect of the bull as well as development rates of embryos produced with sorted sperm lower than embryos with unsorted sperm, independent of the culture system used. The cryoresistance to vitrification of embryos produced with sexed sperm did not differ from that of conventionally produced embryos (re-expansion rates at 24 and 48 h: 74.6% vs. 75.5%, and 64.5% vs. 68.1% for embryos produced with conventional and sorted sperm, respectively; hatching rates at 48 h: 63.55% vs. 55.5% for embryos produced with conventional and sorted sperm, respectively). Finally, no significant differences were found in pregnancy rates after the embryo transfer of fresh and vitrified/warmed blastocysts (52.8% vs. 42.0%, respectively; P > 0.05). Male and female embryos produced with sorted sperm showed the same quality in terms of developmental ability, cryoresistance, and pregnancy rates after transfer. Our culture system, coupled with the vitrification in fiber plugs, provides good quality sex-known embryos which survive vitrification at similar rates than embryos produced with conventional unsorted sperm; also it produces good pregnancy rates after transfer of sexed embryos both fresh and after vitrification and warming.  相似文献   

15.
Two studies were conducted to evaluate the influence of cryoprotectant, cooling rate, container and cryopreservation procedure on the post-thaw viability of sheep embryos. In Study 1, late morula- to blastocyst-stage embryos were exposed to 1 of 10 cryoprotectant (1.5 M, glycerol vs propylene glycol)-plunge temperature treatments. Embryos were placed in glass ampules and cooled at 1 degrees C/min to -5 degrees C, seeded and further cooled at 0.3 degrees C/min to -15, -20, -25, -30 and -35 degrees C before rapid cooling by direct placement in liquid nitrogen (LN(2)). Post-thaw embryo viability was improved (P<0.01) when embryos were cooled to at least -30 degrees C before LN(2) plunging. Although there were no overt differences in embryo viability between cryoprotectant treatments (each resulted in live offspring after embryo transfer), there was a lower (P<0.01) incidence of zona pellucida damage using propylene glycol (4%) compared to glycerol (40%). In Study 2, embryos were equilibrated in 1.5 M propylene glycol or glycerol or a vitrification solution (VS3a). Embryos treated in propylene glycol or glycerol were divided into ampule or one-step((R)) straw treatments, cooled to -6 degrees C at 1 degrees C/min, seeded, cooled at 0.5 degrees C/min to -35 degrees C, held for 15 minutes and then transferred to LN(2). Embryos vitrified in the highly concentrated VS3a (6.5 M glycerol + 6% bovine serum albumin) were transferred from room air to LN(2) vapor, and then stored in LN(2). Propylene glycol- and glycerol-treated embryos in straws experienced lower (P<0.05) degeneration rates (27%) and yielded more (P<0.05) hatched blastocysts (73 and 60%, respectively) at 48 hours of culture and more (P<0.05) trophoblastic outgrowths (67 and 53%, respectively) after 1 week than vitrified embryos (47, 40 and 20%, respectively). In vitro development rate for VS3a-treated embryos was similar (P>0.10) to that of ampule controls, which had fewer (P<0.05) expanded blastocysts compared to similar straw treatments. Live offspring were produced from embryos cryopreserved by each straw treatment (propylene glycol, 3 of 7; glycerol, 1 of 7; VS3a, 2 of 7). In summary, freeze-preservation of sheep embryos was more effective in one-step straws than glass ampules and propylene glycol tended to be the optimum cryoprotectant. Furthermore, these findings demonstrate, for the first time, the biological competence of sheep embryos cryopreserved using the simple and rapid procedure of vitrification.  相似文献   

16.

Background  

The aim of this study was to determine the intra- and inter-observer variability in the evaluation of embryo quality. Multilevel images of embryos on day 1, day 2 and day 3, were analysed using different morphological parameters.  相似文献   

17.
As the importance of swine models in biomedical research increases, it is essential to develop low-cost, high-throughput systems to cryopreserve swine germplasm for maintenance of these models. However, porcine embryos are exceedingly sensitive to low temperature and successful cryopreservation is generally limited to the use of vitrification in open systems that allow direct contact of the embryos with liquid nitrogen (LN2). This creates a high risk of pathogen transmission. Therefore, cryopreservation of porcine embryos in a “closed” system is of very high importance. In this study, in vitro-produced (IVP) porcine embryos were used to investigate cryosurvival and developmental potential of embryos cryopreserved in a closed system. Optimal centrifugal forces to completely disassociate intracellular lipids from blastomeres were investigated using Day-4 embryos. Cryosurvival of delipidated embryos was investigated by vitrifying the embryos immediately after centrifugation, or after development to blastocysts. In this study, centrifugation for 30 min at 13,000 g was adequate to completely delipidate the embryos; furthermore, these embryos were able to survive cryopreservation at a rate comparable to those centrifuged for only 12 min. When delipidated embryos were vitrified at the blastocyst stage, there was no difference in survival between embryos vitrified using OPS and 0.25 mL straws. Some embryos vitrified by each method developed to term. These experiments demonstrated that porcine embryos can be cryopreserved in a closed system after externalizing their intracellular lipids. This has important implications for banking swine models of human health and disease.  相似文献   

18.
19.

Background  

In-vitro fertilization (IVF) with blastocyst as opposed to cleavage stage embryos has been advocated to improve success rates. Limited information exists on which to predict which patients undergoing blastocyst embryo transfer (BET) will achieve pregnancy. This study's objective was to evaluate the predictive value of patient and cycle characteristics for clinical pregnancy following fresh BET.  相似文献   

20.
Cryopreservation of oocytes and embryos is a crucial step for the widespread and conservation of animal genetic resources. However, oocytes and early embryos are very sensitive to chilling and cryopreservation and although new advances have been achieved in the past few years the perfect protocol has not yet been established. All oocytes and embryos suffer considerable morphological and functional damage during cryopreservation but the extent of the injury as well as differences in survival and developmental rates may be highly variable depending on the species, developmental stage and origin (for example, in vitro produced or in vivo derived, micromanipulated or not). Currently, there are two methods for gamete and embryos cryopreservation: slow freezing and vitrification. We have experienced both techniques but vitrification has become a viable and promising alternative to traditional approaches especially when dealing with in vitro produced or micromanipulated embryos and oocytes. Recently new strategies based on emerging studies in the field of lipid research have been used to reduce intracellular lipid content in bovine in vitro produced embryos and therefore increase their tolerance to micromanipulation and cryopreservation. The addition of a conjugated isomer of linoleic acid, the trans-10, cis-12 octadecadienoic acid to embryo culture medium more than twice improved embryo post-thawing viability after micromanipulation and vitrification. Vitrification was also used for the cryopreservation of embryos belonging to the Portuguese Animal Germplasm Bank project presently running at our facilities. Presented at the International Consensus Meeting “New Horizons in Cell and Tissue Banking” on May 2007 at Vale de Santarém, Portugal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号