首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persons with cerebral palsy frequently walk with a crouched, internally rotated gait. Spastic medial hamstrings or adductors are presumed to contribute to excessive hip internal rotation in some patients; however, the capacity of these muscles to produce internal rotation has not been adequately investigated. The purpose of this study was to determine the hip rotation moment arms of the medial hamstrings and adductors in persons with femoral anteversion deformities who walk with a crouched, internally rotated gait. A musculoskeletal model with a "deformable" femur was developed. This model was used, in conjunction with kinematic data obtained from gait analysis, to calculate the muscle moment arms for combinations of joint angles and anteversion deformities exhibited by 21 subjects with cerebral palsy and excessive hip internal rotation. We found that the semimembranosus, semitendinosus, and gracilis muscles in our model had negligible or external rotation moment arms when the hip was internally rotated or the knee was flexed -- the body positions assumed by the subjects during walking. When the femur was excessively anteverted, the rotational moment arms of the adductor brevis, adductor longus, pectineus, and proximal compartments of the adductor magnus in our model shifted toward external rotation. These results suggest that neither the medial hamstrings nor the adductors are likely to contribute substantially to excessive internal rotation of the hip and that other causes of internal rotation should be considered when planning treatments for these patients.  相似文献   

2.
There are no direct recordings of obturator internus muscle activity in humans because of difficult access for electromyography (EMG) electrodes. Functions attributed to this muscle are based on speculation and include hip external rotation/abduction, and a role in stabilization as an “adjustable ligament” of the hip. Here we present (1) a technique to insert intramuscular EMG electrodes into obturator internus plus (2) the results of an investigation of obturator internus activity relative to that of nearby hip muscles during voluntary hip efforts in two hip positions and a weight-bearing task. Fine-wire electrodes were inserted with ultrasound guidance into obturator internus, gluteus maximus, piriformis and quadratus femoris in ten participants. Participants performed ramped and maximal isometric hip efforts (open kinetic chain) into flexion/extension, abduction/adduction, and internal/external rotation, and hip rotation to end range in standing. Analysis of the relationship between activity of the obturator internus and the other hip muscles provided evidence of limited contamination of the recordings with crosstalk. Obturator internus EMG amplitude was greatest during hip extension, then external rotation then abduction, with minimal to no activation in other directions. Obturator internus EMG was more commonly the first muscle active during abduction and external rotation than other muscles. This study describes a viable and valid technique to record obturator internus EMG and provides the first evidence of its activation during simple functions. The observation of specificity of activation to certain force directions questions the hypothesis of a general role in hip stabilisation regardless of force direction.  相似文献   

3.
Moment arm lengths of three hip extensor muscles, the gluteus maximus, the hamstrings and the adductor magnus, were determined at hip flexion angles from 0 degrees to 90 degrees by combining data from ten autopsy specimens and from twenty patients, the latter examined by computed tomography. A straight-line muscle model for muscle force was used for the hamstrings and adductor magnus, and for the gluteus maximus a two-segment straight-line muscle force model was used. With the joint in its anatomical position the moment arm of the gluteus maximus to the bilateral motion axis averaged 79 mm, for the hamstrings 61 mm and for the adductor magnus 15 mm. The moment arm of gluteus maximus decreased with increasing hip flexion angle. The hamstrings showed an increase in moment arm length up to an average of 35 degrees hip flexion and then a decrease with increasing hip flexion angle. The corresponding figures for the adductor magnus moment arm showed an increase up to 75 degrees and then a decrease. Statistical analysis revealed significant differences in moment arm length between men and women.  相似文献   

4.
Crouch gait, a troublesome movement abnormality among persons with cerebral palsy, is characterized by excessive flexion of the hips and knees during stance. Treatment of crouch gait is challenging, at present, because the factors that contribute to hip and knee extension during normal gait are not well understood, and because the potential of individual muscles to produce flexion or extension of the joints during stance is unknown. This study analyzed a three-dimensional, muscle-actuated dynamic simulation of walking to quantify the angular accelerations of the hip and knee induced by muscles during normal gait, and to rank the potential of the muscles to alter motions of these joints. Examination of the muscle actions during single limb stance showed that the gluteus maximus, vasti, and soleus make substantial contributions to hip and knee extension during normal gait. Per unit force, the gluteus maximus had greater potential than the vasti to accelerate the knee toward extension. These data suggest that weak hip extensors, knee extensors, or ankle plantar flexors may contribute to crouch gait, and strengthening these muscles--particularly gluteus maximus--may improve hip and knee extension. Abnormal forces generated by the iliopsoas or adductors may also contribute to crouch gait, as our analysis showed that these muscles have the potential to accelerate the hip and knee toward flexion. This work emphasizes the need to consider how muscular forces contribute to multijoint movements when attempting to identify the causes of abnormal gait.  相似文献   

5.
The objective of the present study was to establish test–retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC – 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range = 0.81–0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range = 0.49–0.79). The majority of the EMG sampled muscles (n = 12 and n = 11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC = 0.81–0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major finding revealed high and moderate levels of between-day reliability of isokinetic hip peak torque and prime mover EMG. It is recommended that the day-to-day variability estimates concomitant with acceptable levels of reliability be considered when attempting to objectify intervention effects on hip muscle performance.  相似文献   

6.
Prone hip extension has been used as a self-perturbation task to test the stability of the lumbopelvic region. However, the relationship between recruitment patterns in the hip and trunk muscles and lumbopelvic kinematics remains unknown. The present study aimed to examine if the balance of hip and trunk muscle activities are related to pelvic motion and low back muscle activity during prone hip extension. Sixteen healthy participants performed prone hip extension from 30° of hip flexion to 10° of hip extension. Surface electromyography (of the gluteus maximus, semitendinosus, rectus femoris, tensor fasciae latae, multifidus, and erector spinae) and pelvic kinematic measurements were collected. Results showed that increased activity of the hip flexor (tensor fasciae latae) relative to that of hip extensors (gluteus maximus and semitendinosus) was significantly associated with increased anterior pelvic tilt during hip extension (r=0.52). Increased anterior pelvic tilt was also significantly related to the delayed onset timing of the contralateral and ipsilateral multifidus (r=0.57, r=0.53) and contralateral erector spinae (r=0.63). Additionally, the decrease of the gluteus maximus activity relative to the semitendinosus was significantly related to increased muscle activity of the ipsilateral erector spinae (r=-0.57). These results indicate that imbalance between the agonist and antagonist hip muscles and delayed trunk muscle onset would increase motion in the lumbopelvic region.  相似文献   

7.
ObjectiveExternally applied abduction and rotational loads are major contributors to the knee joint injury mechanism; yet, how muscles work together to stabilize the knee against these loads remains unclear. Our study sought to evaluate lower limb functional muscle synergies in healthy young adults such that muscle activation can be directly related to internal knee joint moments.MethodsConcatenated non-negative matrix factorization extracted muscle and moment synergies of 22 participants from electromyographic signals and joint moments elicited during a weight-bearing force matching protocol.ResultsTwo synergy sets were extracted: Set 1 included four synergies, each corresponding to a general anterior, posterior, medial, or lateral force direction. Frontal and transverse moments were coupled during medial and lateral force directions. Set 2 included six synergies, each corresponding to a moment type (extension/flexion, ab/adduction, internal/external rotation). Hamstrings and quadriceps dominated synergies associated with respective flexion and extension moments while quadriceps-hamstring co-activation was associated with knee abduction. Rotation moments were associated with notable contributions from hamstrings, quadriceps, gastrocnemius, and hip ab/adductors, corresponding to a general co-activation muscle synergy.ConclusionOur results highlight the importance of muscular co-activation of all muscles crossing the knee to support it during injury-inducing loading conditions such as externally applied knee abduction and rotation. Functional muscle synergies can provide new insight into the relationship between neuromuscular control and knee joint stability by directly associating biomechanical variables to muscle activation.  相似文献   

8.
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle–muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.  相似文献   

9.
Hill-type muscle models are commonly used in musculoskeletal models to estimate muscle forces during human movement. However, the sensitivity of model predictions of muscle function to changes in muscle moment arms and muscle-tendon properties is not well understood. In the present study, a three-dimensional muscle-actuated model of the body was used to evaluate the sensitivity of the function of the major lower limb muscles in accelerating the whole-body center of mass during gait. Monte-Carlo analyses were used to quantify the effects of entire distributions of perturbations in the moment arms and architectural properties of muscles. In most cases, varying the moment arm and architectural properties of a muscle affected the torque generated by that muscle about the joint(s) it spanned as well as the torques generated by adjacent muscles. Muscle function was most sensitive to changes in tendon slack length and least sensitive to changes in muscle moment arm. However, the sensitivity of muscle function to changes in moment arms and architectural properties was highly muscle-specific; muscle function was most sensitive in the cases of gastrocnemius and rectus femoris and insensitive in the cases of hamstrings and the medial sub-region of gluteus maximus. The sensitivity of a muscle's function was influenced by the magnitude of the muscle's force as well as the operating region of the muscle on its force-length curve. These findings have implications for the development of subject-specific models of the human musculoskeletal system.  相似文献   

10.
Static optimization is commonly employed in musculoskeletal modeling to estimate muscle and joint loading; however, the ability of this approach to predict antagonist muscle activity at the shoulder is poorly understood. Antagonist muscles, which contribute negatively to a net joint moment, are known to be important for maintaining glenohumeral joint stability. This study aimed to compare muscle and joint force predictions from a subject-specific neuromusculoskeletal model of the shoulder driven entirely by measured muscle electromyography (EMG) data with those from a musculoskeletal model employing static optimization. Four healthy adults performed six sub-maximal upper-limb contractions including shoulder abduction, adduction, flexion, extension, internal rotation and external rotation. EMG data were simultaneously measured from 16 shoulder muscles using surface and intramuscular electrodes, and joint motion evaluated using video motion analysis. Muscle and joint forces were calculated using both a calibrated EMG-driven neuromusculoskeletal modeling framework, and musculoskeletal model simulations that employed static optimization. The EMG-driven model predicted antagonistic muscle function for pectoralis major, latissimus dorsi and teres major during abduction and flexion; supraspinatus during adduction; middle deltoid during extension; and subscapularis, pectoralis major and latissimus dorsi during external rotation. In contrast, static optimization neural solutions showed little or no recruitment of these muscles, and preferentially activated agonistic prime movers with large moment arms. As a consequence, glenohumeral joint force calculations varied substantially between models. The findings suggest that static optimization may under-estimate the activity of muscle antagonists, and therefore, their contribution to glenohumeral joint stability.  相似文献   

11.
Gluteus maximus muscle function and the origin of hominid bipedality   总被引:1,自引:0,他引:1  
Bipedality not only frees the hands for tool use but also enhances tool use by allowing use of the trunk for leverage in applying force and thus imparting greater final velocity to tools. Since the weight and acceleration of the trunk and forelimbs on the hindlimbs must be counteracted by muscles such as m. gluteus maximus that control pelvic and trunk movements, it is suggested that the large size of the cranial portion of the human gluteus maximus muscle and its unique attachment to the dorsal ilium (which is apparent in the Makapan australopithecine ilium) may have contributed to the effectiveness with which trunk movement was exploited in early hominid foraging activities. To test this hypothesis, the cranial portions of both right and left muscles were investigated in six human subjects with electromyography during throwing, clubbing, digging, and lifting. The muscles were found to be significantly recruited when the trunk is used in throwing and clubbing, initiating rotation of the pelvis and braking it as trunk rotation ceases and the forelimb accelerates. They stabilize the pelvis during digging and exhibit marked and prolonged activity when the trunk is maintained in partial flexion during lifting of heavy objects.  相似文献   

12.
A scheme was developed to classify muscles according to their primary, secondary and tertiary functions, e.g. a muscle which produces primarily a flexion moment may also produce secondary abduction and tertiary internal rotation moments. The functions of muscles crossing the hip and knee joints were computed based upon the changing relative positions of joint centers and muscle origins and insertions during one gait cycle. The function of several of the major muscles crossing the hip and knee joints is reported for the different limb positions corresponding to normal gait. It was found that the amount of force necessary to produce a given moment about a joint was dependent upon the limb position. In addition, the muscle functions changed significantly with limb position. Electrical stimulation of muscles of a paralyzed subject gave qualitative support to the results.  相似文献   

13.
Knee ligamentous injuries persist in the sport of Alpine skiing. To better understand the load mechanisms which lead to injury, pure varus/valgus and pure axial moments were applied both singly and in combination to the right knees of six human test subjects. The corresponding relative knee rotations in three degrees of freedom were measured. Knee flexion angles for each test subject were 15 and 60 degrees for the individual moments and 60 degrees for the combination moments. For both knee flexion angles the hip flexion angle was 0 degrees. Leg muscles were quiescent and axial force was minimal during all tests. Tables of data include sample statistics for each of four flexibility parameters in each loading direction. Data were analyzed statistically to test for significant differences in flexibility parameters between the test conditions. In flexing the knee from 15 to 60 degrees, the resulting knee rotations under single moments depended upon flexion angle with varus, valgus, and internal rotations increasing significantly. Also, rotations were different depending on load direction; varus rotation was significantly different and greater than valgus rotation at both flexion angles. Also external rotation was significantly different and greater than internal at 15 degrees flexion, but not at 60 degrees flexion. Coupled rotations under single moments were also observed. Applying pure varus/valgus moments resulted in coupled external/internal rotations which were inconsistent and hence not significant. Applying pure axial moments resulted in consistent and hence significant varus/valgus rotations; an external axial moment induced varus rotation and an internal axial moment induced valgus rotation. For combination moments, varus/valgus rotations decreased significantly from those rotations at similar load levels in the single moment studies. Also, a varus moment significantly increased external rotation and a valgus moment significantly decreased internal rotation. These differences indicate significant interaction between corresponding load combinations. These results suggest that load interaction is a potentially important phenomenon in knee injury mechanics.  相似文献   

14.
Moment arms are important for understanding muscular behavior and for calculating internal muscle forces in musculoskeletal simulations. Biarticular muscles cross two joints and have moment arms that depend on the angle of both joints the muscles cross. The tendon excursion method was used to measure the joint angle-dependence of hamstring (biceps femoris, semimembranosus and semitendinosus) moment arm magnitudes of the feline hindlimb at the knee and hip joints. Knee angle influenced hamstring moment arm magnitudes at the hip joint; compared to a flexed knee joint, the moment arm for semimembranosus posterior at the hip was at most 7.4 mm (25%) larger when the knee was extended. On average, hamstring moment arms at the hip increased by 4.9 mm when the knee was more extended. In contrast, moment arm magnitudes at the knee varied by less than 2.8 mm (mean=1.6 mm) for all hamstring muscles at the two hip joint angles tested. Thus, hamstring moment arms at the hip were dependent on knee position, while hamstring moment arms at the knee were not as strongly associated with relative hip position. Additionally, the feline hamstring muscle group had a larger mechanical advantage at the hip than at the knee joint.  相似文献   

15.
BackgroundChanges in activation patterns of hip extensors and pelvic stabilizing muscles are recognized as factors that cause low back disorders and these disturbances could have an impact on the physiological loading and alter the direction and magnitude of joint reaction forces.ObjectiveTo investigate activation patterns of the gluteus maximus, semitendinosus and erector spinae muscles with healthy young individuals during four different modalities of therapeutic exercise.MethodsThirty-one volunteers were selected: (16 men and 15 women), age (24.5 ± 3.47 years), body mass of 66.89 ± 11.89 kg and a height of 1.70 ± 0.09 m). They performed four modalities of therapeutic exercise while the electromyographic activity of the investigated muscles was recorded to determine muscle pattern activation for each exercise.ResultsRepeated measure ANOVA revealed that muscle activation patterns were similar for the four analyzed exercises, starting with the semitendinosus, followed by the erector spinae, and then, the gluteus maximus. The gluteus maximus was the last activated muscle during hip extension associated with knee flexion (p < 0.0001), knee extension (p < 0.0001), and with lateral rotation and knee flexion (p < 0.05).ConclusionFindings of the present study suggested that despite individual variability, the muscle firing order was similar for the four therapeutic exercises.  相似文献   

16.
The human gluteus maximus differs from that of the other hominoids because of its size and bony attachments. These differences raise questions concerning their sequence of appearance in human evolution. Given that humans practice a unique locomotor style, one wonders if the human gluteus maximus morphology is a prerequisite or a consequence of upright bipedal locomotion. This question is addressed using a computer model that evaluates muscle leverage in a variety of locomotor postures. In this model, the human-like, or ape-like, muscular pattern is imposed upon a representative hindlimb of each of the five extant hominoids. Shapes of the skeletal elements (i.e. ilium and ischium lengths) are adjusted in the computer to simulate an evolutionary progression from an ape to a human skeletal morphology. Changes in the leverage of different parts of the gluteus maximus (measured as moment arms) are monitored during this transition. The results show how the mechanical leverages of the gluteus maximus would have changed in a variety of hypothetical evolutionary sequences that describe an ape to human transition. Although the hominoid models exhibit minor differences in these simulations, they all show that the postural and locomotor functions of the gluteus maximus would become more difficult if musculoskeletal morphology changed to the human-like pattern before erect bipedal posture was adopted. Conversely, small adjustments in the ape-like musculoskeletal condition support an erect bipedal posture. These results suggest that a human like posture would have preceded the appearance of the human-like musculoskeletal morphology. Human gluteal morphology, therefore, is a consequence and not a prerequisite of the upright bipedal posture.  相似文献   

17.

Background

The abdominal drawing-in maneuver (ADIM) is used to prevent abnormal movements of the lumbar spine and pelvis during therapeutic exercises. This study compared the effects of ADIM on the muscle onset time of the hamstring, gluteus maximus, and erector spinae muscles during prone hip extension exercise in subjects with or without hyperlordotic lumbar angle. Forty healthy adults (18 male, 22 female) were recruited for this study.

Methods

The lumbar lordotic angles and pelvic tilt angles of the subjects were measured using the Avaliação postural analysis software. The subjects were divided into two groups: the lumbar hyperlordotic angle (LHLA) and lumbar normal lordotic angle (LNLA) groups. The muscle contraction onset time of the hamstring, gluteus maximus, and erector spinae were assessed using surface electromyography.

Results

During ADIM application, the muscle contraction onset time of the gluteus maximus was significantly increased in the LHLA group compared with the LNLA group.

Conclusions

ADIM application during prone hip extension was more effective for gluteus maximus onset time in the LHLA group. Therefore, ADIM during prone hip extension may be useful for gluteus maximus training in individuals with lumbar hyperlordosis.  相似文献   

18.
Patellofemoral pain (PFP) is a common condition that occurs more frequently in females. Anatomical, hormonal and neuromuscular factors have been proposed to contribute to the increased incidence of PFP in females, with neuromuscular factors considered to be of particular importance. This cross-sectional study aimed to evaluate differences in the neuromotor control of the knee and hip muscles between genders and to investigate whether clinical measures of hip rotation range and strength were associated with EMG measures of hip and thigh motor control. Twenty-nine (16 female and 13 male) asymptomatic participants completed a visual choice reaction-time stair stepping task. EMG activity was recorded from vastus medialis oblique, vastus lateralis, anterior and posterior gluteus medius muscles. In addition hip rotation range of motion and hip external rotation, abduction and trunk strength were assessed. There were no differences in the timing or peak of EMG activation of the vasti or gluteus medius muscle between genders during the stepping task. There were however significant associations between EMG measures of motor control of the vasti and hip strength in both females and males. These findings are suggestive of a link between hip muscle control and vasti neuromotor control.  相似文献   

19.
The PLAD (personal lift assistive device) was designed to reduce the lumbar moment during lifting and bending tasks via elastic elements. This investigation examined the effects of modulating the elastic stiffness. Thirteen men completed 90 lifts (15 kg) using 6 different PLAD stiffnesses in stoop, squat and freestyle lifting postures. The activity of 8 muscles were recorded (latissimus dorsi, thoracic and lumbar erector spinae, rectus abdominis, external oblique, gluteus maximus, biceps femoris and rectus femoris), 3D electromagnetic sensors tracked the motion of each segment and strain gauges measured the elastic tension. EMG data were rectified, filtered, normalized and integrated as a percentage of the lifting task. The highest PLAD tension elicited the greatest reduction in erector spinae activity (mean of thoracic and lumbar) in comparison to the no-PLAD condition for the stoop (37%), squat (38%), and freestyle (37%) lifts, while prompting comparable reductions in gluteus maximums and biceps femoris activity. The highest PLAD stiffness also elicited the greatest reduction in the integrated L4/L5 flexion moment for the stoop (19.0%), squat (18.4%) and freestyle (17.4%) lifts without changing peak lumbar flexion. Each increase in PLAD stiffness further reduced the muscle activity of the posterior chain and the dynamic lumbar moment.  相似文献   

20.
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号