首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Where and how do anthrax toxins exit endosomes to intoxicate host cells?   总被引:1,自引:0,他引:1  
The role of Bacillus anthracis virulence factors in its pathogenesis has been subjected to intense investigation with the aim of finding novel preventive and therapeutic protocols. Toxins that are endocytosed and act in the cytosol of host cells have a central role in B. anthracis infection. Understanding of anthrax toxin cell entry has increased during the past few years and a composite picture is emerging. Nevertheless, unanswered and controversial questions remain, particularly concerning the site and mode of anthrax toxin cell entry, the role of anthrax toxin receptors in the process and the possible involvement of cytosolic chaperones, which might affect entry efficiency. Here, the current model of anthrax toxin cell entry, an alternative model and experimental approaches for clarifying unanswered questions will be discussed.  相似文献   

3.
Anthrax toxins and the host: a story of intimacy   总被引:4,自引:0,他引:4  
Although the dramatic events of the year 2001 have revitalized the interest in anthrax, research on Bacillus anthracis and its major virulence factors is one of the oldest theme in microbiology and started with the early works of Robert Koch and Louis Pasteur. The anthrax toxins are central to anthrax pathogenesis. They were discovered in the mid-1950s and since then there has been an enormous amount of work to elucidate both the molecular and physiopathological details of their mode of action. In this review, after a brief introduction of B. anthracis, we will focus on the latest findings that concern two aspects of anthrax toxin research: the environmental signals and the molecular mechanisms that regulate toxin synthesis, and the mechanisms of intoxication. We hope to convince the reader that the anthrax toxins are highly specialized determinants of B. anthracis pathogenicity: their synthesis is integrated within a global virulence programme and they target key eukaryotic cell proteins. We conclude with a consideration of the therapeutic perspectives arising from our current knowledge of how the toxins work.  相似文献   

4.
Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-deficient mice remained fully sensitive to both anthrax lethal and edema toxins, demonstrating that targeting of myeloid cells is not responsible for anthrax toxin-induced lethality. Surprisingly, the myeloid-specific CMG2-deficient mice were completely resistant to B. anthracis infection. Neutrophil depletion experiments suggest that B. anthracis relies on anthrax toxin secretion to evade the scavenging functions of neutrophils to successfully establish infection. This work demonstrates that anthrax toxin uptake through CMG2 and the resulting impairment of myeloid cells are essential to anthrax infection.  相似文献   

5.
Initiation of inhalation anthrax is believed to involve phagocytosis of Bacillus anthracis spores by alveolar macrophages, followed by spore germination within the phagolysosome. In order to establish a systemic infection, it is predicted that bacilli then escape from the macrophage and replicate extracellularly. Mechanisms utilized by B. anthracis to escape from the macrophage are not well characterized, but a role for anthrax toxin has been proposed. Here we report the isolation of an anthrax toxin-resistant cell line (R3D) following chemical mutagenesis of toxin-sensitive RAW 264.7 murine macrophage cells. Both R3D and RAW 264.7 cells phagocytize spores of a B. anthracis Sterne strain. However, RAW 264.7 cells are killed following spore challenge, whereas R3D cells survive. Resistance to toxin and spore challenge correlates with loss of expression of anthrax toxin receptor 2 (ANTXR2/CMG-2). When R3D cells are complemented with cDNA encoding either murine ANTXR2 or human anthrax toxin receptor 1 (ANTXR1/TEM-8), toxin and spore challenge susceptibility are restored, indicating that over-expression of either ANTXR can confer susceptibility to anthrax spore challenge. Taken together, these results indicate that anthrax toxin expression by the germinated spore enables B. anthracis killing of the macrophage from within.  相似文献   

6.
7.
In experiments on inbred mice infected with B. anthracis capsular strain 71/12 of Tsenkovsky's second vaccine B. anthracis lethal toxin introduced in mixture with spores has been shown to aggravate anthrax infection in CBA mice susceptible to anthrax, while producing a faint effect on the infectious process in BALB mice with hereditary resistance to anthrax. B. anthracis purified edema toxin has been found to produce a weaker aggravating effect with respect to anthrax infection than the lethal toxin. As revealed in these experiments, the capacity of the lethal toxin to suppress the activity of peritoneal macrophages in vitro is the more pronounced, the more resistant to anthrax are the mice used as the donors of these macrophages. The mechanism of hereditary immunity which may ensure resistance to infection in the presence of immunosuppression is discussed.  相似文献   

8.
9.
10.
11.
12.
13.
This study describes early intracellular events occurring during the establishment phase of Bacillus anthracis infections. Anthrax infections are initiated by dormant endospores gaining access to the mammalian host and becoming engulfed by regional macrophages (Mφ). During systemic anthrax, late stage events include vegetative growth in the blood to very high titres and the synthesis of the anthrax exotoxin complex, which causes disease symptoms and death. Experiments focus on the early events occurring during the first few hours of the B. anthracis infectious cycle, from endospore germination up to and including release of the vegetative cell from phagocytes. We found that newly vegetative bacilli escape from the phagocytic vesicles of cultured Mφ and replicate within the cytoplasm of these cells. Release from the Mφ occurs 4–6 h after endospore phagocytosis, timing that correlates with anthrax infection of test animals. Genetic analysis from this study indicates that the toxin plasmid pXO1 is required for release from the Mφ, whereas the capsule plasmid pXO2 is not. The transactivator atxA , located on pXO1, is also found to be essential for release, but the toxin genes themselves are not required. This suggests that Mφ release of anthrax bacilli is atxA regulated. The putative 'escape' genes may be located on the chromosome and/or on pXO1.  相似文献   

14.
Adenylate cyclase (AC) toxins produced by Bacillus anthracis and Bordetella pertussis were compared for their ability to interact with and intoxicate Chinese hamster ovary cells. At 30 degrees C, anthrax AC toxin exhibited a lag of 10 min for measurable cAMP accumulation that was not seen with pertussis AC toxin. This finding is consistent with previous data showing inhibition of anthrax AC toxin but not pertussis AC toxin entry by inhibitors of receptor-mediated endocytosis (Gordon, V. M., Leppla, S. H., and Hewlett, E. L. (1988) Infect. Immun. 56, 1066-1069). Treatment of target Chinese hamster ovary cells with trypsin or cycloheximide reduced anthrax AC toxin-induced cAMP accumulation by greater than 90%, but was without effect on pertussis AC toxin. In contrast, incubation of the AC toxins with gangliosides prior to addition to target cells inhibited cAMP accumulation by pertussis AC toxin, but not anthrax AC toxin. To evaluate the role of lipids in the interaction of pertussis AC toxin with membranes, multicompartmental liposomes were loaded with a fluorescent marker and exposed to toxin. Pertussis AC toxin elicited marker release in a time- and concentration-dependent manner and required a minimal calcium concentration of 0.2 mM. These data demonstrate that the requirements for intoxication by the AC toxins from B. anthracis and B. pertussis are fundamentally different and provide a perspective for new approaches to study the entry processes.  相似文献   

15.
Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity   总被引:4,自引:0,他引:4  
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema factor, to generate lethal toxin (LTx) and edema toxin (ETx), respectively. These toxins enter cells through the interaction of PA with specific cell surface receptors. The anthrax toxins act to suppress innate immune responses and, given the importance of human neutrophils in innate immunity, they are likely relevant targets of the anthrax toxin. We have investigated in detail the effects of B. anthracis toxin on superoxide production by primary human neutrophils. Both LTx and ETx exhibit distinct inhibitory effects on fMLP (and C5a) receptor-mediated superoxide production, but have no effect on PMA nonreceptor-dependent superoxide production. These inhibitory effects cannot be accounted for by induction of neutrophil death, or by changes in stimulatory receptor levels. Analysis of NADPH oxidase regulation using whole cell and cell-free systems suggests that the toxins do not exert direct effects on NADPH oxidase components, but rather act via their respective effects, inhibition of MAPK signaling (LTx), and elevation of intracellular cAMP (ETx), to inhibit upstream signaling components mediating NADPH oxidase assembly and/or activation. Our results demonstrate that anthrax toxins effectively suppress human neutrophil-mediated innate immunity by inhibiting their ability to generate superoxide for bacterial killing.  相似文献   

16.
Anthrax is the disease caused by the Gram-positive bacterium Bacillus anthracis. Two toxins secreted by B. anthracis - lethal toxin (LT) and oedema toxin (OT) - contribute significantly to virulence. Although these toxins have been studied for half a century, recent evidence indicates that LT and OT have several roles during infection not previously ascribed to them. Research on toxin-induced effects other than cytolysis of target cells has revealed that LT and OT influence cell types previously thought to be insensitive to toxin. Multiple host factors that confer sensitivity to anthrax toxin have been identified recently, and evidence indicates that the toxins probably contribute to colonisation and invasion of the host. Additionally, the toxins are now known to cause a wide spectrum of tissue and organ pathophysiologies associated with anthrax. Taken together, these new findings indicate that anthrax-toxin-associated pathogenesis is much more complex than has been traditionally recognised.  相似文献   

17.
This report summarizes the recent investigations on the use of Bacillus anthracis as a live vector for delivery of antigens. Recombinant strains were constructed by engineering the current live Sterne vaccine. This vaccine, used to prevent anthrax in cattle, causes side-effects due to anthrax toxin activities. Bacteria producing a genetically detoxified toxin factor were devoid of lethal effects and were as protective as the Sterne strain against experimental anthrax. Moreover, B. anthracis expressing a foreign antigen controlled by an in vivo inducible promoter were able to generate either antibody or cellular protective responses against heterologous diseases.  相似文献   

18.
Groups of Fischer 344 rats were injected intravenously with Bacillus anthracis culture supernatant containing crude anthrax toxin. Times to death of rats given identical toxin preparations varied directly with the weights of the rats (P = 0.0001). In contrast to previous reports, the data indicate that rat weight must be taken into account during in vivo assays of anthrax lethal toxin activity.  相似文献   

19.
Groups of Fischer 344 rats were injected intravenously with Bacillus anthracis culture supernatant containing crude anthrax toxin. Times to death of rats given identical toxin preparations varied directly with the weights of the rats (P = 0.0001). In contrast to previous reports, the data indicate that rat weight must be taken into account during in vivo assays of anthrax lethal toxin activity.  相似文献   

20.
Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号