首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea–urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes.  相似文献   

2.
In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8 M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT (dithiothreitol) and 0.2% carrier ampholytes; (b) 5 M urea, 2 M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate), 40 mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7 M urea, 2 M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.  相似文献   

3.
Plant tissues are made up of a broad range of proteins with a variety of properties. After extraction, solubilization of a diverse range of plant proteins for efficient proteomic analysis using two-dimensional electrophoresis is a challenging process. We tested the efficiency of 12 solubilization buffers in dissolving acidic and basic proteins extracted from mature seeds of wheat. The buffer containing two chaotropes (urea and thiourea), two detergents (3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate and N-decyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate), two reducing agents (dithiothreitol and tris (2-carboxyethyl) phosphine hydrochloride) and two types of carrier ampholytes (BioLyte pH 4-6 and pH 3-10) solubilized the most acidic proteins in the pH range between 4 and 7. The buffer made up of urea, thiourea, 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate, DeStreak reagent (Amersham Biosciences, Uppsala, Sweden) and immobilized pH gradient buffer, pH 6-11 (Amersham Biosciences) solubilized the most basic proteins in the pH range between 6 and 11. These two buffers produced two-dimensional gels with high resolution, superior quality and maximum number of detectable protein (1425 acidic protein and 897 basic protein) spots.  相似文献   

4.
Current methods for quantitatively comparing proteomes (protein profiling) have inadequate resolution and dynamic range for complex proteomes such as those from mammalian cells or tissues. More extensive profiling of complex proteomes would be obtained if the proteomes could be reproducibly divided into a moderate number of well-separated pools. But the utility of any prefractionation is dependent upon the resolution obtained because extensive cross contamination of many proteins among different pools would make quantitative comparisons impractical. The current study used a recently developed microscale solution isoelectrofocusing (musol-IEF) method to separate human breast cancer cell extracts into seven well-resolved pools. High resolution fractionation could be achieved in a series of small volume tandem chambers separated by thin acrylamide partitions containing covalently bound immobilines that establish discrete pH zones to separate proteins based upon their pIs. In contrast to analytical 2-D gels, this prefractionation method was capable of separating very large proteins (up to about 500 kDa) that could be subsequently profiled and quantitated using large-pore 1-D SDS gels. The pH 4.5-6.5 region was divided into four 0.5 pH unit ranges because this region had the greatest number of proteins. By using very narrow pH range fractions, sample amounts applied to narrow pH range 2-D gels could be increased to detect lower abundance proteins. Although 1.0 pH range 2-D gels were used in these experiments, further protein resolution should be feasible by using 2-D gels with pH ranges that are only slightly wider than the pH ranges of the musol-IEF fractions. By combining musol-IEF prefractionation with subsequent large pore 1-D SDS-PAGE (>100 kDa) and narrow range 2-D gels (<100 kDa), large proteins can be reliably quantitated, many more proteins can be resolved, and lower abundance proteins can be detected.  相似文献   

5.
It is important to solubilize acetone-precipitated proteins before isoelectric focusing (IEF) to achieve high resolution 2-DE gels. To resolve the maximum possible number of plant protein spots, we developed an improved solubilization buffer for plant proteins. We demonstrated that the resolution of 2-DE gels increased dramatically as the concentration of Tris-base increased, with maximum solubilization obtained at 200 mM Tris-base (Ly200T). The Ly200T buffer was more effective than the commonly used solubilization buffer containing 40 mM Tris at solubilizing acetone-precipitated plant proteins. Use of the Ly200T buffer to solubilize proteins resulted in an increase in intensity of approximately 30% of plant protein spots in the larger-than-40 kDa region of the gel. The Ly200T buffer also improved the resolution of abundant and basic proteins. Thus, the Ly200T buffer can be used to achieve greater resolution of protein spots in plant proteomics research.  相似文献   

6.
7.
The human liver is the largest organ in the body and has many important physiological functions. A global analysis of human liver proteins is essential for a better understanding of the molecular basis of the normal functions of the liver and of its diseases. As part of the Human Liver Proteome Project (HLPP), the goal of the present study was to visualize and detect as many proteins as possible in normal human livers using two-dimensional gel electrophoresis (2-DE). We have constructed a reference map of the proteins of human normal liver that can be used for the comprehensive analysis of the human liver proteome and other related research. To improve the resolution and enhance the detection of low abundance proteins, we developed and optimized narrow pH range ultra-zoom 2-DE gels. High resolution patterns of human liver in pH gradients 4.5–5.5, 5–6, 5.5–6.7, 6–9 and 6–11 are presented. To improve the poor resolution in the alkaline pH range of 2-DE gels, we optimized the isoelectric focusing protocol by including sample application using cup loading at the anode and incorporating 1.2% hydroxyethyl disulfide, 15% 2-propanol and 5% glycerol in the rehydration buffer. Using the optimized protocol, we obtained reproducibly better resolution in both analytical and preparative 2-DE gels. Compared with the 2386 and 1878 protein spots resolved in the wide range 3–10 and 4–7 pH gradients respectively, we obtained 5481 protein spots from the multiple (overlapping) narrow pH range ultra-zoom gels in the range of pH 4.5–9. The visualized reference map of normal human liver proteins presented in this paper will be valuable for comparative proteomic research of the liver proteome.  相似文献   

8.
The dissociation of noncovalently associated protein-protein complexes in human plasma was examined by comparing two-dimensional gel electrophoresis (2-DE) patterns obtained in two different electrophoretic conditions. A type I 2-DE pattern was obtained running nondenaturing isoelectric focusing (IEF) followed by nondenaturing gel electrophoresis and a type II 2-DE pattern was nondenaturing IEF followed by sodium dodecyl sulfate gel electrophoresis. Micro-sized gels (internal diameter(id) 1.3 x 35 mm polyacrylamide IEF gels and 38 x 38 x 1 mm polyacryamide slab gels) were used to follow the dissociation processes of major plasma proteins. Larger gel sizes (id 3.4 x 160 mm agarose IEF gels and 160 x 120 x 2.8 mm polyacrylamide slab gels) were used to detect minor plasma proteins dissociated from major proteins. About 110 spots, which have not been detected on type I (nondenaturing) 2-D gels, newly appeared on type II large-sized 2-D gels at molecular masses smaller than 67 kDa. Some of these spots had been analyzed and identified, but about 70 minor spots (isoelectric point 5.5-7.5 and relative molecular mass 8-45 kDa) were detected for the first time by applying large volumes of human plasma samples to the large type II 2-D gels. These minor spots could be concentrated on type II 2-D gels by enriching the immunoglobulin G (IgG) fraction under nondenaturing conditions, and they disappeared when IgG was removed from the fraction. These results strongly suggest that many of the minor spots newly detected were bound to IgG in physiological conditions.  相似文献   

9.
Görg A  Boguth G  Köpf A  Reil G  Parlar H  Weiss W 《Proteomics》2002,2(12):1652-1657
Due to their heterogeneity and huge differences in abundance, the detection and identification of all proteins expressed in eukaryotic cells and tissues is a major challenge in proteome analysis. Currently the most promising approaches are sample prefractionation procedures prior to narrow pH range two-dimensional gel electrophoresis (IPG-Dalt) to reduce the complexity of the sample and to enrich for low abundance proteins. We recently developed a simple, cheap and rapid sample prefractionation procedure based on flat-bed isoelectric focusing (IEF) in granulated gels. Complex sample mixtures are prefractionated in Sephadex gels containing urea, zwitterionic detergents, dithiothreitol and carrier ampholytes. After IEF, up to ten gel fractions alongside the pH gradient are removed with a spatula and directly applied onto the surface of the corresponding narrow pH range immobilized pH gradient (IPG) strips as first dimension of two-dimensional (2-D) gel electrophoresis. The major advantages of this technology are the highly efficient electrophoretic transfer of the prefractionated proteins from the Sephadex IEF fraction into the IPG strip without any sample dilution, and the full compatibility with subsequent IPG-IEF, since the prefactionated samples are not eluted, concentrated or desalted, nor does the amount of the carrier ampholytes in the Sephadex fraction interfere with subsequent IPG-IEF. Prefractionation allows loading of higher protein amounts within the separation range applied to 2-D gels and facilitates the detection of less abundant proteins. Also, this system is highly flexibile, since it allows small scale and large scale runs, and separation of different samples at the same time. In the current study, this technology has been successfully applied for prefractionation of mouse liver proteins prior to narrow pH range IPG-Dalt.  相似文献   

10.
A major cause of poor resolution in the alkaline pH range of two-dimensional electrophoresis (2-DE) gels is unsatisfactory separation of basic proteins in the first dimension. We have compared methods for the separation of basic proteins in the isoelectric focusing dimension of human brain proteins. The combined use of anodic cup-loading and the hydroxyethyldisulphide containing solution (DeStreak) produced better resolution in both analytical and micropreparative protein loaded 2-DE gels than the other methods investigated.  相似文献   

11.
Zhou S  Bailey MJ  Dunn MJ  Preedy VR  Emery PW 《Proteomics》2005,5(11):2739-2747
We report the results of a systematic investigation to quantify the losses of protein during a well-established two-dimensional polyacrylamide gel electrophoresis (2-DE) procedure. Radioactively labelled proteins ([(14)C]bovine serum albumin and a homogenate prepared from the liver of a rat that had been injected with [(35)S]methionine) were used, and recovery was quantified by digesting pieces of gel in H(2)O(2) and subjecting the digests to liquid scintillation counting. When samples were loaded onto the first dimension immobilised pH gradient strips by in-gel rehydration, recovery of protein from the strips was 44-80% of the amount of protein loaded, depending on the amount of protein in the sample. Most of the unrecovered protein appeared to have adhered to the reswelling tray. Losses during isoelectric focusing (IEF) were much smaller (7-14%), although approximately 2% of the protein appeared to migrate from sample strips to adjacent blank strips in the focussing apparatus. A further 17-24% of the proteins were lost into the buffers during equilibration prior to running in the second dimension. Losses during the second dimension run and subsequent staining with SYPRO Ruby amounted to less than 10%. The overall loss during 2-DE was reduced by approximately 25% when proteins were loaded onto the IEF strips using sample cups instead of by in-gel rehydration. These extensive and variable losses during the 2-DE procedure mean that spot intensities on 2-DE gels cannot be used to derive reliable, quantitative information on the amounts of proteins present in the original sample.  相似文献   

12.
Analytical isoelectric focusing (IEF) has been applied to the study of the apolipoprotein components of rat serum high density and very low density lipoproteins. The apolipoproteins were separated on 7.5% polyacrylamide gels containing 6.8% urea, with a pH gradient of 4-6. The middle molecular weight range apolipoproteins were identified on IEF gels by the use of apolipoproteins purified by electrophoresis on gels containing sodium dodecyl sulfate (SDS). The A-1 protein focused as 4 to 5 bands from pH 5.46 to 5.82; the A-IV protein and the arginine-rich protein each focused as 4 to 6 bands from pH 5.31 to 5.46. The low molecular weight proteins focused from pH. 4.43 to 4.83 and are the subject of a separate communication. Comparisons of the IEF method with SDS gel electrophoresis, polyacrylamide gel electrophoresis in urea, and Sephadex chromatography are also reported. Additional studies were also carried out that tend to rule out carbamylation or incomplete unfolding of the proteins in the presence of urea as the causes of the observed heterogeneity.  相似文献   

13.
The G-electrode-loading method (GELM) is a technique enabling a large number of proteins from rat liver to enter an immobilized pH gradient (IPG) gel strip for isoelectric focusing (IEF). In this method, three slips containing the sample solution are placed on the cathodic edge of an IPG gel strip and a slip containing Chaps solution, a filtration membrane, and an electrode slip are placed on top. Finally, a G-electrode is placed on these slips. The Chaps solution (an amphoteric compound) is supplied gently to the sample solution during IEF and helps the proteins in the sample solution to enter the IPG gel strips with a high solubilization capacity. This method was compared with traditional slip-loading and in-gel rehydration, and it showed the best results for protein separation, including high-molecular-mass proteins.  相似文献   

14.
Hydrophobic proteins are difficult to analyze by two-dimensional electrophoresis (2-DE) because of their intrinsic tendency to self-aggregate during the first dimension (isoelectric focusing, IEF) or the equilibration steps. This aggregation renders their redissolution for the second dimension uncertain and results in the reduction of the number and intensity of protein spots, and in undesirable vertical and horizontal streaks across gels. Trifluoroethanol (TFE) is traditionally used at high concentration to solubilize peptides and proteins for NMR studies. Depending upon its concentration, TFE strongly affects the three-dimensional structure of proteins. We report here a phase separation system based on TFE/CHCl(3), which is able to extract a number of intrinsic membrane proteins. The addition of TFE in the in-gel sample rehydration buffer to improve membrane protein IEF separation is also presented. The procedure using urea, thiourea, and sulfobetaine as chaotropic agents was modified by the addition of TFE and removing of sulfobetaine at an optimized concentration in the solubilization medium used for the first dimension. When using membrane fractions isolated from Escherichia coli, the intensity and the number of spots detected from 2-DE gels that used TFE in the solubilization medium were significantly increased. The majority of the proteins identified using peptide mass fingerprinting and tandem mass spectrometry (MS/MS) were intrinsic membrane proteins, proteins of beta barrel structure or transmembrane proteins.  相似文献   

15.
Membrane and membrane-associated proteins are rich in known or potential pharmaceutical drug targets for carcinogenesis. In order to systemically analyze membrane proteins of human breast cancer, we isolated membrane from MCF-7 cells by sequential extraction by washing with three different buffers, namely, phosphate buffer (5 mM, pH 8.0), Tris (40 mM, pH 9.5), and sodium carbonate (100 mM pH 11). The extracted proteins were separated by two-dimensional gel electrophoresis (2-DE) using cup-loading and were then analyzed by peptide mass fingerprinting (PMF). A total of 137 spots from the gels of the three procedures were successfully identified. They corresponded to 79 distinct proteins. Among them, 22 exclusive proteins belonging to each washing procedure were also found, including P-glycoprotein, endoplasmin, Stress-70 protein, ADAM 10, protein disulfide isomerase, and glutamate receptor. These results indicate phosphate buffer to be the most beneficial for enrichment of peripheral membrane proteins, and sodium carbonate is beneficial for the presentation of integral membrane proteins but usually with poor resolution. The reference maps and identified proteins will serve as a basis for the further investigation of breast cancer, especially the proteomic comparison among different cell types of breast cancer, or among the different stages in the drug interfering process of the MCF-7 cell line.  相似文献   

16.
A procedure for the molecular identification of MHC class I products based on 1-D IEF and subsequent immunoblotting is described. Optimal conditions for 1-D IEF, the electrophoretic transfer of proteins out of denaturing, nonionic detergent-containing gels to nitrocellulose, and the requisite antibodies, both polyclonal and monoclonal, for the visualization of class I heavy chains have been established. Cross-reactivity of antibodies has enabled the biochemical analysis of class I heavy chains in the dog. The procedure reported here requires modest amounts of cells and allows a rapid molecular characterization of class I heavy chain polymorphisms in man and other species without the need for radiochemical methods.Abbreviations used in this paper FCS fetal calf serum - MHC major histocompatibility complex - NP-40 Nonidet P-40 - PBL peripheral blood lymphocytes - PHA phytohemagglutinin - RaHC rabbit anti-heavy chain serum - TX-114 Triton X-114 - 1-D IEF one-dimensional isoelectric focusing  相似文献   

17.
The Gradiflow trade mark, a preparative electrophoresis instrument capable of separating proteins on the basis of their size or charge, was used to separate whole cell lysates, prepared from bakers yeast (Saccharomyces cerevisiae) and Chinese snow pea seeds (Pisum sativum macrocarpon), into protein fractions of different pH regions. Both broad and narrow range (with a difference of approximately 1 pH unit) pH fractions were obtained. Analysis of the protein fractions by isoelectric focusing gels and two-dimensional (2-D) polyacrylamide gel electrophoresis indicated minimal overlap between the pH fractions. Further, when the prefractionated acidic samples were analyzed on pH 4-7 immobilized pH gradient 2-D gels, improved resolution of the proteins within the chosen pH region was achieved compared to the unfractionated samples. This study demonstrates that the Gradiflow could be used as a preparative electrophoresis tool for the isolation of proteins into distinct pH fractions.  相似文献   

18.
Two-dimensional gel electrophoresis with immobilized pH gradients in the first dimension, initially applied for the separation of soluble and total cellular proteins, has been extended to the analysis of membrane proteins. We show that the usual procedures lead to artifacts and irreproducible results due to aggregation and precipitation of proteins and protein-phospholipid complexes during isoelectric focusing (first dimension) and sodium dodecyl sulfate (SDS) gel electrophoresis (second dimension). Optimized solubilization procedures for hydrophobic membrane proteins are presented and the use of dilute samples is shown to be essential to overcome the major problems in isoelectric focusing. Increased volumes of samples dissolved in rehydration buffer are applied by direct rehydration of dry immobilized pH gradient (IPG) gels. Isoelectric focusing in 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) without urea gives good results as does 2% Nonidet-P40 with 8 M urea. Heat denaturation should be avoided. An optimized equilibration procedure for IPG gel strips in SDS sample buffer prior to separation in the second dimension was developed that minimizes loss of proteins and results in high-resolution two-dimensional electropherographic maps with a minimum of streaking. The gel strips are partially dehydrated at 40 degrees C and shortly reswollen in situ on the SDS slab gel in SDS-sample buffer containing agarose.  相似文献   

19.
In conventional isoelectric focusing in soluble, amphoteric buffers, it has been quite difficult to produce two-dimensional (2-D) separations in pH intervals greater than pH 4-8. In general more alkaline proteins were analyzed by non-equilibrium IEF in the first dimension. Even with the advent of immobilized pH gradients (IPG), separations could be extended to pH gradients not wider than pH 3-10, due to a lack of suitable buffers. Since more acidic and more alkaline acrylamido buffers have recently been synthesized, we have been able to optimize what is believed to be the widest possible immobilized pH gradient, a pH 2.5-11 span. We report here for the first time 2-D separations of total tissue lysates in such extended pH 2.5-11 gradients. It appears that, with the IPG technique, close to 100% of all possible cell products can be displayed in a single 2-D map.  相似文献   

20.
Two-dimensional gel electrophoresis (2-DE) is used to compare the protein profiles of different crude biological samples. Narrow pH range Immobilized pH Gradient (IPG) strips were designed to increase the resolution of these separations. To take full advantage of IPG strips, the ideal sample should be composed primarily of proteins that have isoelectric point (pI) values within the pH range of the IPG strip. Prefractionation of cell lysates from a human prostate cancer cell line cultured in the presence or absence of epigallocatechin-3-gallate was achieved in fewer than 30 min using an anion-exchange resin and two expressly designed buffers. The procedure was carried out in a centrifuge tube and standard instrumentation was used. The cell lysates were prefractionated into two fractions: proteins with pI values above 7 and between 4 and 7, respectively. The fractions were then analyzed by 2-DE, selecting appropriate pH ranges for the IPG strips, and the gels were compared with those of unprefractionated cell lysates. Protein loading capacity was optimized and resolution and visualization of the less abundant and differentially expressed proteins were greatly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号