首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme farnesyl-diphosphate synthase (FPS, EC2.5.1.1/EC2.5.1.10), which has been shown to play a key role in isoprenoid biosynthesis, catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and di-methylallyl diphosphate. Insects do not synthesize cholesterol de novo, rather farnesyl diphosphate leads to the formation of nonsterol isoprenoids, which are essential for insect development and reproduction. In this paper, we describe the characterization of one FPS from the moth Agrotis ipsilon, the first insect FPS to be reported. An homologous probe was obtained through a nested PCR strategy using degenerate primers designed from the conserved domains of FPS from other organisms. The complete cDNA clone was isolated by PCR screening of a brain cDNA library by using homologous primers deduced from the probe. Analysis of the nucleotide sequence revealed that the cDNA encodes a polypeptide of 412 amino acids (Mr = 47 170), which shares regions similar to the FPS of other organisms, but exhibits singularities such as an extra N-terminal extension of approximately 70 amino acid residues. Using an RNase protection assay, a protected fragment corresponding to the region encoding the FPS catalytic site was found in brain, ovary, fat body and corpora allata samples, but not in muscle. FPS is overexpressed in the corpora allata, the endocrine gland that produces the juvenile hormones. These hormones are specific to insects and play a crucial role in regulating insect physiology.  相似文献   

2.
Wang P  Liao Z  Guo L  Li W  Chen M  Pi Y  Gong Y  Sun X  Tang K 《Molecules and cells》2004,18(2):150-156
Farnesyl diphosphate synthase (FPS; EC2.5.1.1/EC2. 5.1.10) catalyzes the synthesis of farnesyl diphosphate, and provides precursor for biosynthesis of sesquiterpene and isoprenoids containing more than 15 isoprene units in Ginkgo biloba. Here we report the cloning, characterization and functional analysis of a new cDNA encoding FPS from G. biloba. The full-length cDNA (designated GbFPS) had 1731 bp with an open reading frame of 1170 bp encoding a polypeptide of 390 amino acids. The deduced GbFPS was similar to other known FPSs and contained all the conserved regions of trans-prenyl chain-elongating enzymes. Structural modeling showed that GbFPS had the typical structure of FPS, the most prominent feature of which is the arrangement of 13 core helices around a large central cavity. Southern blot analysis revealed a small FPS gene family in G. biloba. Expression analysis indicated that GbFPS expression was high in roots and leaves, and low in stems. Functional complementation of GbFPS in an FPS-deficient strain confirmed that GbFPS mediates farnesyl diphosphate biosynthesis.  相似文献   

3.
A cDNA encoding farnesyl diphosphate synthase (FPS; EC2.5.1.1/EC2.5.1.10) was isolated from Centella asiacita (L.) Urban, using degenerate primers based on two highly conserved domains. A full-length cDNA clone was subsequently isolated by rapid amplification of cDNA ends (RACE) PCR. The sequence of the CaFPS (C. asiatica farnesyl diphosphate synthase) cDNA contains an open reading frame of 1029 nucleotides encoding 343 amino acids with a molecular mass of 39.6 kDa. The deduced CaFPS amino acid sequence exhibits 84, 79, and 72%, identity to the FPSs of Artemisia annua, Arabidopsis thaliana, and Oryza sativa, respectively. Southern blot analysis suggested that the C. asiatica genome contains only one FPS gene. An artificially expressed soluble form of the CaFPS was identified by SDS-PAGE. It had high specific activity and produced farnesyl diphosphate as the major isoprenoid.  相似文献   

4.
Farnesyl diphosphate synthase (FPS; EC 2.5.1.1/EC 2.5.1.10) catalyzes the synthesis of farnesyl diphosphate, a key intermediate in the biosynthesis of sesquiterpenes. This present study described the cloning and characterization of a cDNA encoding FPS from leaves of Michelia chapensis Dandy (designated as McFPS, GenBank accession number: GQ214406) for the first time. McFPS was 1,432 bp and contained an open reading frame (ORF) of 1,056 bp, encoding a protein of 351 amino acids with a calculated molecular mass of 40.52 kDa. Bioinformatic analysis revealed that the deduced McFPS had high homology with FPSs from other plant species. Phylogenetic tree analysis indicated that McFPS belonged to the plant FPS group and had the closest relationship with FPS from Chimonanthus praecox. Southern blot analysis revealed that there were at most two copies of McFPS gene existed in M. chapensis genome. The organ expression pattern analysis showed that McFPS expressed strongly only in leaves, and there were no expression in stems and roots, implying that McFPS was an organ-specific expressing gene. Functional complementation of McFPS in a FPS-deficient yeast strain demonstrated that cloned cDNA encoded a farnesyl diphosphate synthase.  相似文献   

5.
Cao X  Yin T  Miao Q  Li C  Ju X  Sun Y  Jiang J 《Molecular biology reports》2012,39(2):1487-1492
The root of Euphorbia pekinensis as a traditional herbal medicine has been recorded in Chinese pharmacopoeias for the treatment of oedema, gonorrhea, migraine and wart cures. In this work, we reported on the cDNA cloning and characterization of a novel farnesyl diphosphate synthase (FPS) from E. pekinensis. The full-length cDNA named EpFPS (Genbank Accession Number FJ755465) contained 1431 bp with an open reading frame of 1029 bp encoding a polypeptie of 342 amino acids. The deduced amino acid sequence of the EpFPS named EpFPS exhibited a high homology with other plant FPSs, and contained five conserved domains. Phylogenetic analysis showed that EpFPS belonged to the plant FPS group. Southern blot analysis revealed that there exists a small FPS gene family in E. pekinensis. Expression pattern analysis revealed that EpFPS expressed strongly in root, weak in leaf and stem. In callus, expression of EpFPS gene and biosynthesis of triterpenoids were strongly induced by Methyl jasmonate and slightly induced by Salicylic acid. Functional complementation of EpFPS in an ergosterol auxotrophic yeast strain indicated that the cloned cDNA encoded a functional farnesyl diphosphate synthase.  相似文献   

6.
Farnesyl diphosphate is involved in rubber biosynthesis as an initiating substrate for both polyprenol and mushroom rubber. So far, we have isolated the cDNA of a farnesyl diphosphate synthase (FPS) for the first time from a rare rubber-producing mushroom, Lactarius chrysorrheus, by the degenerate RT-PCR technique based on sequence information of FPS genes from fungi and yeasts. The open reading frame was clarified to encode a protein of 381 amino acid residues with a calculated molecular weight of 42.9 kDa. The deduced amino acid sequence of L. chrysorrheus FPS showed about 50% identity with those of other fungi and yeasts as well as plants. We expressed the cDNA of L. chrysorrheus FPS in Escherichia coli as a glutathione-S-transferase (GST)-fusion protein. The purified obtained protein showed FPS activity in which geranyl diphosphate (GPP) served as primary substrate, with a 2.4-fold higher k(cat)/K(m) value for GPP than for dimethylallyl diphosphate (DMAPP).  相似文献   

7.
We isolated a gene encoding for farnesyl diphosphate synthase (FPS) from Panax ginseng, a species that produces a large quantity of triterpene saponins such as ginsenosides. The deduced amino acid sequence of PgFPS was 77, 84 and 95 % identical to those of Arabidopsis, Hevea, and Centella. Southern blot analysis indicated that P. ginseng contained more than two genes encoding for FPS. When the cDNA of PgFPS was expressed in Escherichia coli, the recombinant enzyme, purified with a His-tag column, was found to possess FPS activity. When cultures of ginseng hairy root were treated with 0.1 mM methyl jasmonate (MJ), PgFPS mRNA was detected within 12 h of the treatment, and achieved maximum after 24 h. Also FPS activity in the hairy root cultures after 12 h of MJ treatment was higher than that of the control.  相似文献   

8.
目的:克隆并分析绞股蓝法呢基焦磷酸合酶(FPS)基因的全长序列。方法:参照罗汉果法呢基焦磷酸合酶基因,设计扩增绞股蓝FPS基因的3′RACE引物,采用3'RACE和5'RACE法克隆绞股蓝FPS基因全长cDNA。结果:获得绞股蓝FPS基因全长cDNA序列共1288个核苷酸,包含一个1026核苷酸的开放读框,编码342个氨基酸残基,推断该蛋白的相对分子质量为3.94×104。NCBI Blast结果显示绞股蓝FPS基因编码蛋白的氨基酸序列与已知的植物FPS氨基酸序列的同源性为91%~74%,核酸序列的同源性为88%~78%。结论:克隆了绞股蓝FPS基因全长cDNA序列,为进一步研究绞股蓝FPS基因的表达及三萜皂苷合成通路关键酶分子的进化奠定了基础。  相似文献   

9.
Farnesyl dlphosphate synthase (FPS; EC 2.5.1.10) catalyzes the production of 15-carbon farnesyl dlphosphate which Is a branch-point Intermediate for many terpenoids. This reaction Is considered to be a ratelimiting step In terpenold biosynthesis. Here we report for the first time the cloning of a new full-length cDNA encoding farnesyl dlphosphate synthase from a gymnosperm plant species, Taxus media Rehder, designated as TmFPS1. The full-length cDNA of TmFPS1 (GenBank accession number: AY461811) was 1 464 bp with a 1 056-bp open reading frame encoding a 351-amino acid polypeptlde with a calculated molecular weight of 40.3 kDa and a theoretical pl of 5.07. Biolnformatlc analysis revealed that TmFPS1 contained all five conserved domains of prenyltransferases, and showed homology to other FPSs of plant origin. Phylogenetlc analysis showed that farnesyl dlphosphate synthases can be divided Into two groups: one of prokaryotic origin and the other of eukaryotic origin. TmFPS1 was grouped with FPSs of plant origin. Homologybased structural modeling showed that TmFPS1 had the typical spatial structure of FPS, whose most prominent structural feature Is the arrangement of 13 core helices around a large central cavity In which the catalytic reaction takes place. Our blolnformatic analysis strongly suggests that TmFPS1 is a functional gene. Southern blot analysis revealed that TmFPS1 belongs to a small FPSgene family in T. media. Northern blot analysis indicated that TmFPS1 is expressed in all tested tissues, Including the needles, stems and roots of T. media. Subsequently, functional complementatlon with TmFPS1 in a FPS-deflclent mutant yeast demonstrated that TmFPS1 did encode farnesyl dlphosphate synthase, which rescued the yeast mutant. This study will be helpful In future Investigations aiming at understanding the detailed role of FPS In terpenold biosynthesis flux control at the molecular genetic level.  相似文献   

10.
Squalene synthetase (farnesyl-diphosphate:farnesyl-diphosphate farnesyltransferase, EC 2.5.1.21) catalyzes the first committed step for sterol biosynthesis and is thought to play an important role in the regulation of isoprenoid biosynthesis in eukaryotes. Using degenerate oligonucleotides based on a conserved region found in yeast and human squalene synthetase genes, a cDNA was cloned from the plant Nicotiana benthamiana. The cloned cDNA contained an open reading frame of 1234 bp encoding a polypeptide of 411 amino acids (M r 47002). Northern blot analysis of, poly(A)+ mRNA from N. benthamiana and N. tabacum cv. MD609 revealed a single band of ca. 1.6 kb in both Nicotiana species. The identity and functionality of the cloned plant squalene synthetase cDNA was further confirmed by expression of the cDNA in Escherichia coli and in a squalene synthetase-deficient erg9 mutant of Saccharomyces cerevisiae. Antibodies raised against a truncated form of the protein recognized an endogenous plant protein of appropriate size as well as the full-length bacterially expressed protein as detected by western analysis. Comparison of the deduced primary amino acid sequences of plant, yeast, rat and human squalene synthetase revealed regions of conservation that may indicate similar functions within each polypeptide.  相似文献   

11.
12.
法尼基焦磷酸合酶(farnesyl diphosphate synthase,FPS)是三萜皂苷生物合途径的一个关键酶,为研究FPS基因在枸骨中的功能,该研究采用PCR技术将一个FPS基因的cDNA序列从枸骨叶中分离出来,并命名为IcFPS1。结果表明:根据测序结果分析发现扩增获得的IcFPS1基因cDNA长度为1 591 bp,包含一个完整的开放阅读框,大小为1 029 bp。通过序列分析发现枸骨IcFPS1基因编码342个氨基酸,分子量和等电点分别为39.58 kDa和5.18。通过理化性质预测分析发现IcFPS1蛋白不含信号肽,不含有跨膜区域,该IcFPS1蛋白为亲水性蛋白质。通过序列多重比对发现IcFPS1蛋白质与其他植物的FPS蛋白质高度同源,有共同的保守区域和氨基酸序列,其中与西洋参FPS序列的相似性高达89%。通过系统进化树分析发现枸骨FPS蛋白与同属于被子植物的五加科植物FPS蛋白亲缘关系较近,说明FPS基因在进化过程中相对比较保守。根据蛋白调控网络预测分析结果发现该蛋白可能与IPP1、IPP2、GGPS3、GGPS6和ERA1相互作用,参与类异戊二烯的合成代谢过程。通过实时荧光定量PCR分析发现IcFPS1基因在枸骨各个组织部位中均有表达,其中在枸骨根中表达量最高,在茎和雌花中表达量最低。  相似文献   

13.
14.
Farnesyl pyrophosphate synthase (FPS) catalyzes the synthesis of farnesyl pyrophosphate, a key intermediate in sterol and sesquiterpene biosynthesis. Using a polymerase chain reaction-based approach, we have characterized LeFPS1, a tomato (Lycoperscion esculentum cv Wva 106) fruit cDNA, which encodes a functional FPS. We demonstrate that tomato FPSs are encoded by a small multigenic family with genes located on chromosomes 10 and 12. Consistent with farnesyl pyrophosphate requirement in sterol biosynthesis, FPS genes are ubiquitously expressed in tomato plants. Using an LeFPS1 specific probe, we show that the corresponding gene can account for most of FPS mRNA in most plant organs, but not during young seedling development, indicating a differential regulation of FPS genes in tomato. FPS gene expression is also under strict developmental control: FPS mRNA was mainly abundant in young organs and decreased as organs matured with the exception of fruits that presented a biphasic accumulation pattern. In this latter case in situ hybridization studies have shown that FPS mRNA is similarly abundant in all tissues of young fruit. Taken together our results suggest that several FPS isoforms are involved in tomato farnesyl pyrophosphate metabolism and that FPS genes are mostly expressed in relation to cell division and enlargement.  相似文献   

15.
Farnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis.  相似文献   

16.
17.
《Gene》1996,171(2):193-196
Farnesyl pyrophosphate synthetase (FPS; EC 2.5.1.10) produces the 15-carbon farnesyl pyrophosphate which is utilized in the synthesis of sterols, carotenoids, dolichols, coenzyme Q, heme a and farnesylated proteins. We have cloned this mRNA sequence from a maize endosperm cDNA library and determined the 1378-nucleotide (nt) sequence of the DNA fragment. This sequence specifies an open reading frame of 1050 nt encoding FPS. The deduced amino acid sequence shows a high degree of similarity to FPS from a wide range of organisms. Southern blot analysis indicated that there are at least two FPS gene copies in the maize genome. The cloned FPS is expressed preferentially in maize endosperm and is up-regulated in the endosperm mutants, o2 and fl2.  相似文献   

18.
从水母雪莲Saussurea medusa Maxim. cDNA文库中得到一段查尔酮合酶基因 (SmCHS) 片段,然后通过RT-PCR得到完整的查尔酮合酶基因cDNA。序列分析表明SmCHS全长1 313 bp,其开放阅读框为1 170 bp,编码389个氨基酸,预测表达蛋白的分子量为43 kDa。构建原核表达质粒pET28a(+)-SmCHS,重组质粒转化大肠杆菌BL21(DE3),获得表达菌株。经IPTG诱导表达后,对表达产物进行SDS-PAGE分析,结果显示,表达的融合蛋白以部分可溶的形式存在。用Ni-NTA预装柱对融合蛋白进行亲和纯化,对纯化蛋白进行酶活检测,结果表明融合蛋白具有查尔酮合酶活性,可催化底物4-香豆酰辅酶A和丙二酰辅酶A缩合生成产物柚皮素查尔酮。  相似文献   

19.
20.
在动物、植物、微生物细胞中普遍存在的三羧酸循环(TCA循环)是产生ATP的主要途径,它不仅参与糖的分解代谢,也参与蛋白质和脂肪的分解代谢。柠檬酸合成酶在TCA循环中起着关键的调节作用,它通过催化乙酰辅酶A与草酰乙酸缩合成柠檬酸。本文用基因组信息学方法获得的一个长1636bp的EST重叠群序列,它与猪柠檬酸合成酶cDNA序列高度同源。从这一序列出发,又用PCR方法从人的睾丸组织和骨胳肌组织的cDNA分子库中,分别克隆到一个1492bp的cDNA片段,在其序列中含有一个长1401bp的可读框,该可读框推导的编码蛋白由466个氨基酸组成,它与猪柠檬酸合成酶、鸡柠檬酸合成酶及酵母柠檬酸合成酶的同源度分别达95.9%,92%和60.9%,故认为该cDNA序列可能就是来自人类柠檬酸合成酶基因的转录本。Northern分析表明人类柠檬酸合成酶在心脏和骨胳肌中呈高表达,在脑、肾和胰腺组织中度表达,在小肠和胸腺中未能检出表达,而在其他9种被检测的组织中仅有低表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号