首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clarke BL  Khosla S 《Steroids》2009,74(3):296-305
Testosterone is the major gonadal sex steroid produced by the testes in men. Testosterone is also produced in smaller amounts by the ovaries in women. The adrenal glands produce the weaker androgens dehydroepiandrosterone, dehydroepiandrosterone sulfate, and androstenedione. These androgens collectively affect skeletal homeostasis throughout life in both men and women, particularly at puberty and during adult life. Because testosterone can be metabolized to estradiol by the aromatase enzyme, there has been controversy as to which gonadal sex steroid has the greater skeletal effect. The current evidence suggests that estradiol plays a greater role in maintenance of skeletal health than testosterone, but that androgens also have direct beneficial effects on bone. Supraphysiological levels of testosterone likely have similar effects on bone as lower levels via direct interaction with androgen receptors, as well as effects mediated by estrogen receptors after aromatization to estradiol. Whether high doses of synthetic, non-aromatizable androgens may, in fact, be detrimental to bone due to suppression of endogenous testosterone (and estrogen) levels is a potential concern that warrants further study.  相似文献   

2.
Circulating dehydroepiandrosterone (DHEA) is converted to testosterone or estrogen in the target tissues. Recently, we demonstrated that skeletal muscles are capable of locally synthesizing circulating DHEA to testosterone and estrogen. Furthermore, testosterone is converted to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase and exerts biophysiological actions through binding to androgen receptors. However, it remains unclear whether skeletal muscle can synthesize DHT from testosterone and/or DHEA and whether these hormones affect glucose metabolism-related signaling pathway in skeletal muscles. We hypothesized that locally synthesized DHT from testosterone and/or DHEA activates glucose transporter-4 (GLUT-4)-regulating pathway in skeletal muscles. The aim of the present study was to clarify whether DHT is synthesized from testosterone and/or DHEA in cultured skeletal muscle cells and whether these hormones affect the GLUT-4-related signaling pathway in skeletal muscles. In the present study, the expression of 5alpha-reductase mRNA was detected in rat cultured skeletal muscle cells, and the addition of testosterone or DHEA increased intramuscular DHT concentrations. Addition of testosterone or DHEA increased GLUT-4 protein expression and its translocation. Furthermore, Akt and protein kinase C-zeta/lambda (PKC-zeta/lambda) phosphorylations, which are critical in GLUT-4-regulated signaling pathways, were enhanced by testosterone or DHEA addition. Testosterone- and DHEA-induced increases in both GLUT-4 expression and Akt and PKC-zeta/lambda phosphorylations were blocked by a DHT inhibitor. Finally, the activities of phosphofructokinase and hexokinase, main glycolytic enzymes, were enhanced by testosterone or DHEA addition. These findings suggest that skeletal muscle is capable of synthesizing DHT from testosterone, and that DHT activates the glucose metabolism-related signaling pathway in skeletal muscle cells.  相似文献   

3.
To determine if there is a gender dimorphism in the expression of leptin receptors (OB-R170, OB-R128 and OB-R98) and the protein suppressor of cytokine signaling 3 (SOCS3) in human skeletal muscle, the protein expression of OB-R, perilipin A, SOCS3 and alpha-tubulin was assessed by Western blot in muscle biopsies obtained from the m. vastus lateralis in thirty-four men (age = 27.1+/-6.8 yr) and thirty-three women (age = 26.7+/-6.7 yr). Basal serum insulin concentration and HOMA were similar in both genders. Serum leptin concentration was 3.4 times higher in women compared to men (P<0.05) and this difference remained significant after accounting for the differences in percentage of body fat or soluble leptin receptor. OB-R protein was 41% (OB-R170, P<0.05) and 163% (OB-R128, P<0.05) greater in women than men. There was no relationship between OB-R expression and the serum concentrations of leptin or 17beta-estradiol. In men, muscle OB-R128 protein was inversely related to serum free testosterone. In women, OB-R98 and OB-R128 were inversely related to total serum testosterone concentration, and OB-R128 to serum free testosterone concentration. SOCS3 protein expression was similar in men and women and was not related to OB-R. In women, there was an inverse relationship between the logarithm of free testosterone and SCOS3 protein content in skeletal muscle (r = -0.46, P<0.05). In summary, there is a gender dimorphism in skeletal muscle leptin receptors expression, which can be partly explained by the influence of testosterone. SOCS3 expression in skeletal muscle is not up-regulated in women, despite very high serum leptin concentrations compared to men. The circulating form of the leptin receptor can not be used as a surrogate measure of the amount of leptin receptors expressed in skeletal muscles.  相似文献   

4.
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.  相似文献   

5.
Previous studies with standard densitometry (DXA) have suggested that the bone mass is strongly dependent on the muscle mass in the species, following a similar relationship at any age and sex hormones or related factors potentiate that relationship. Studies with pQCT indicated that the surplus bone mass per unit of muscle mass previously observed in premenopausal women would be stored in skeletal regions with relatively little mechanical relevance, thus avoiding remotion through mechanically oriented remodelling by the bone mechanostat. Scanning the distal radius with pQCT has also showed a highly significant, linear relationship between SSI of the distal radius and the dynamometric maximal bending moment of the forearm in normal men and women. In order to investigate similar relationships in regions that are inaccessible to pQCT, we used spinal radiographs and axial QCT. This study affords additional evidence to the previous references concerning the direct, significant impact of the regional muscle strength on the determination of the tomographic indicators of bone mechanical quality and their indirect repercussion of the skeletal condition (curvature of the spine).  相似文献   

6.
The functional importance of sex steroid hormones (testosterone and estrogens), derived from extragonadal tissues, has recently gained significant appreciation. Circulating dehydroepiandrosterone (DHEA) is peripherally taken up and converted to testosterone by 3beta-hydroxysteroid dehydrogenase (HSD) and 17beta-HSD, and testosterone in turn is irreversibly converted to estrogens by aromatase cytochrome P-450 (P450arom). Although sex steroid hormones have been implicated in skeletal muscle regulation and adaptation, it is unclear whether skeletal muscles have a local steroidogenic enzymatic machinery capable of metabolizing circulating DHEA. Thus, here, we investigate whether the three key steroidogenic enzymes (3beta-HSD, 17beta-HSD, and P450arom) are present in the skeletal muscle and are capable of generating sex steroid hormones. Consistent with our hypothesis, the present study demonstrates mRNA and protein expression of these enzymes in the skeletal muscle cells of rats both in vivo and in culture (in vitro). Importantly, we also show an intracellular formation of testosterone and estradiol from DHEA or testosterone in cultured muscle cells in a dose-dependent manner. These findings are novel and important in that they provide the first evidence showing that skeletal muscles are capable of locally synthesizing sex steroid hormones from circulating DHEA or testosterone.  相似文献   

7.
8.
Why is the incidence of osteoporotic fracture so much higher in women than in men? The dominant medical view holds that the exaggerated skeletal fragility and fracture risk of postmenopausal women solely reflects the loss of bone following withdrawal of endogenous estrogen. Indeed, an enormous amount of research in this area has attempted to understand the rise in fractures after menopause in terms of the impact of estrogen lack on bone remodeling. Recent insights suggest that this simple view does not offer an adequate explanation for the greater susceptibility of older women to fracture compared to that of men. It seems more reasonable to view bone health as a lifelong process, reflecting the contributions and influences of myriad events occurring throughout life to skeletal acquisition and maintenance. Only recently has the medical community recognized that the amount of bone present at skeletal maturity makes a powerful contribution to lifelong skeletal status. A second area that must be incorporated into discussions of this topic relates to bone size and geometry. Women's bones are inherently smaller than those of men. A bone's strength is determined by its size as well as by its material properties. In boys, pubertal increases in the cortical thickness of long bones are achieved by (testosterone-dependent) periosteal apposition. By contrast, increased cortical thickness in girls reflects bone expansion into the medullary space, with little or no periosteal apposition, suggesting an inhibitory effect of estrogen on the latter process. Consequently, at skeletal maturity, men have wider bones of greater mechanical competence. Although estrogen is generally held to be skeletally protective, this aspect of its actions may actually render women more susceptible to some fractures. In later life, men may lose even more bone from appendicular sites than do women, but men show much greater concomitant increases in periosteal apposition than women, permitting them to maintain a relatively favorable mechanical profile. These several findings are based on cross-sectional observations of relatively few individuals and therefore require confirmation in prospective longitudinal studies. The degree to which gender-related differences in later life skeletal adaptation reflects a bone's mechanical or metabolic environment has been frequently discussed but still awaits experimental confirmation.  相似文献   

9.
The intended therapeutic effect of gonadotropin-releasing hormone (GnRH) agonists is hypogonadism, which is a leading cause of osteoporosis in men. Consistent with this observation, GnRH agonists decrease bone mineral density and increase fracture risk in men with prostate cancer. GnRH agonists markedly decrease serum levels of both testosterone and estrogen. Estrogens play a central role in homeostasis of the normal male skeleton, and the available evidence suggests that estrogen deficiency rather than testosterone deficiency accounts for the adverse skeletal effects of GnRH agonists. The central role of estrogens in male bone metabolism provides a strong rationale to evaluate selective estrogen receptor modulators for prevention of treatment-related osteoporosis in men with prostate cancer. Preliminary evidence suggests that both raloxifene and toremifene increase bone mineral density in GnRH agonist-treated men. An ongoing pivotal study will evaluate the effects of toremifene on fractures and other complications of GnRH agonists in men with prostate cancer.  相似文献   

10.
While the anatomy and physiology of human reproduction differ between the sexes, the effects of hormones on skeletal growth do not. Human bone growth depends on estrogen. Greater estrogen produced by ovaries causes bones in female bodies to fuse before males' resulting in sex differences in adult height and mass. Female pelves expand more than males' due to estrogen and relaxin produced and employed by the tissues of the pelvic region and potentially also due to greater internal space occupied by female gonads and genitals. Evolutionary explanations for skeletal sex differences (aka sexual dimorphism) that focus too narrowly on big competitive men and broad birthing women must account for the adaptive biology of skeletal growth and its dependence on the developmental physiology of reproduction. In this case, dichotomizing evolution into proximate‐ultimate categories may be impeding the progress of human evolutionary science, as well as enabling the popular misunderstanding and abuse of it.  相似文献   

11.
Men and women with hyperandrogenemia have a more proatherogenic plasma lipid profile [e.g., greater triglyceride (TG) and total and low-density lipoprotein-cholesterol and lower high-density lipoprotein-cholesterol concentrations] than healthy premenopausal women. Furthermore, castration of male rats markedly reduces testosterone availability below normal and decreases plasma TG concentration, and testosterone replacement reverses this effect. Testosterone is, therefore, thought to be an important regulator of plasma lipid homeostasis. However, little is known about the effect of testosterone on plasma TG concentration and kinetics. Furthermore, testosterone is a potent skeletal muscle protein anabolic agent in men, but its effect on muscle protein turnover in women is unknown. We measured plasma lipid concentrations, hepatic very low density lipoprotein (VLDL)-TG and VLDL-apolipoprotein B-100 secretion rates, and the muscle protein fractional synthesis rate in 10 obese women before and after trandermal testosterone (1.25 g of 1% AndroGel daily) treatment for 3 wk. Serum total and free testosterone concentrations increased (P < 0.05) by approximately sevenfold in response to testosterone treatment, reaching concentrations that are comparable to those in women with hyperandrogenemia, but lower than the normal range for eugonadal men. Except for a small (~10%) decrease in plasma high-density lipoprotein particle and cholesterol concentrations (P < 0.04), testosterone therapy had no effect on plasma lipid concentrations, lipoprotein particle sizes, and hepatic VLDL-TG and VLDL-apolipoprotein B-100 secretion rates (all P > 0.05); the muscle protein fractional synthesis rate, however, increased by ~45% (P < 0.001). We conclude that testosterone is a potent skeletal muscle protein anabolic agent, but not an important regulator of plasma lipid homeostasis in obese women.  相似文献   

12.
Aging is associated with gradual decline of skeletal muscle strength and mass often leading to diminished muscle quality. This phenomenon is known as sarcopenia and affects about 30% of the over 60-year-old population. Androgens act as anabolic agents regulating muscle mass and improving muscle performance. The role of female sex steroids as well as the ability of skeletal muscle tissue to locally produce sex steroids has been less extensively studied. We show that despite the extensive systemic deficit of sex steroid hormones in postmenopausal compared to premenopausal women, the hormone content of skeletal muscle does not follow the same trend. In contrast to the systemic levels, muscle tissue of post- and premenopausal women had similar concentrations of dehydroepiandrosterone and androstenedione, while the concentrations of estradiol and testosterone were significantly higher in muscle of the postmenopausal women. The presence of steroidogenetic enzymes in muscle tissue indicates that the elevated postmenopausal steroid levels in skeletal muscle are because of local steroidogenesis. The circulating sex steroids were associated with better muscle quality while the muscle concentrations reflected the amount of infiltrated fat within muscle tissue. We conclude that systemically delivered and peripherally produced sex steroids have distinct roles in the regulation of neuromuscular characteristics during aging.  相似文献   

13.
BAUMGARTNER, RICHARD N., ROBERT R. ROSS, DEBRA L. WATERS, WILLIAM M. BROOKS, JOHN E. MORLEY, GEORGE D. MONTOYA, AND PHILIP J. GARRY. Serum leptin in elderly people: associations with sex hormones, insulin, and adipose tissue volumes. Obes Res. Objective There are few data for associations of serum leptin with body fat, fat distribution, sex hormones, or fasting insulin in elderly adults. We hypothesized that the sex difference in serum leptin concentrations would disappear after adjustment for subcutaneous, but not visceral body fat. Serum leptin would not be associated with sex hormone concentrations or serum fasting insulin after adjusting for body fat and fat distribution. Research Methods and Procedures Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes were measured using magnetic resonance imaging in a cross-sectional sample of 56 nondiabetic, elderly men and women aged 64 years to 94 years. Serum leptin, sex hormones (testosterone and estrone), sex hormone-binding globulin, and fasting insulin were also measured. Nine women were taking hormone replacement, and five men were clinically hypogonadal. Results Leptin was significantly associated with both SAT and VAT in each sex. Adjustment for SAT reduced the sex difference in leptin by 56%, but adjustment for VAT increased the difference by 25%. Leptin was not associated with serum estrone or hormone replacement therapy in the women, but had a significant, negative association with testosterone in the men that was independent of SAT, but not VAT. Leptin was significantly associated with fasting insulin in both sexes independent of age, sex hormones, sex hormone-binding globulin, VAT and SAT. Discussion Sex difference in serum leptin is partly explained by different amounts of SAT. Studies including both men and women should adjust for SAT rather than total body fat that includes VAT. The sex difference in serum leptin is not due to estrogen, but may be partly explained by testosterone. Testosterone is negatively associated with leptin in men, but the association is confounded with VAT. Leptin is associated with fasting insulin in non-diabetic elderly men and women independent of body fat, fat distribution. or sex hormones.  相似文献   

14.
Sex hormones and coronary disease: a review of the clinical studies   总被引:12,自引:0,他引:12  
M F Kalin  B Zumoff 《Steroids》1990,55(8):330-352
A male to female ration of coronary disease of 2:1 has been a consistent finding. This differential persists event when the classic risk factors for coronary disease--hypertension, smoking, obesity, diabetes, and hyperlipidemia--are controlled for gender. The most likely ultimate cause of this phenomenon is male-female differences in sex hormone patterns. Clinical studies in this area have either compared the sex hormone profiles of men and women with and without coronary disease or computed the relative prevalence of disease in populations that differ in their sex hormone patterns. In general, research findings have disputed the hypothesis that persons with coronary disease have low levels of a protective factor such as estrogen or progesterone and high levels of testosterone. Coronary disease patients actually have elevated estrogen levels and low testosterone levels; endogenous progesterone levels are normal before infarction but show a stress-mediated increase in the immediate postinfarction period. Findings of a low prevalence of coronary disease in premenopausal women, a loss of protection after menopause, and a low prevalence of coronary disease in men with cirrhosis-related hyperestrogenemia suggest that natural estrogens are antiatherogenic. The protective effect of pregnancy against myocardial infarction, despite concomitant potentially thrombogenic levels of estrogen at the time, seems to indicate that progesterone, whose levels are also extremely high during pregnancy, plays a major anti-infarction protective effect distinct from that of estrogen. Studies of women oral contraceptive (OC) users and men taking estrogens for brief periods have found that these exogenous hormones produce coronary thrombosis but not atherosclerosis. Finally, the finding of increased coronary disease risk in long-term OC users indicates that synthetic estrogens favor coronary atherosclerosis by suppressing natural estrogen and progesterone production.  相似文献   

15.
Sex steroid hormones exert a profound influence on the sexual differentiation and function of the neural circuits that mediate dimorphic behaviors. Both estrogen and testosterone are essential for male typical behaviors in many species. Recent studies with genetically modified mice provide important new insights into the logic whereby these two hormones coordinate the display of sexually dimorphic behaviors: estrogen sets up the masculine repertoire of sexual and territorial behaviors and testosterone controls the extent of these male displays.  相似文献   

16.
Osteoporotic fractures are the result of low density and especially inferior bone quality (microarchitecture) caused by both internal (genes, hormones) and external (life style) influences. Bone mechanosensors are extremely important for the overall integrity of the skeleton, because in response to mechanical load they activate its modeling, resulting in an increase in bone density and strength. The largest physiological loads are caused by muscle contractions. Bone mass in adult men has a closer relationship to muscle mass than is case in women. The sexual differences in the relationship between bone and muscle mass are also apparent in children. Based on the mechanostatic theory, the muscle-bone unit has been defined as a functional system whose components are under the common control of the hormones of the somatotropin-IGF-I axis, sexual steroids, certain adipose tissue hormones and vitamin D. The osteogenic effects of somatotropin-IGF-I system are based on the stimulation of bone formation, as well as increase in muscle mass. Moreover, somatotropin decreases the bone mechanostat threshold and reinforces the effect of physical stress on bone formation. The system, via the muscle-bone unit, plays a significant role in the development of the childhood skeleton as well as in its stability during adulthood. The muscle and bone are also the targets of androgens, which increase bone formation and the growth of muscle mass in men and women, independently of IGF-I. The role of further above-mentioned hormones in regulation of this unified functional complex is also discussed.  相似文献   

17.
Microvascular vasodilation in humans can become impaired with age, leading to cardiovascular diseases ranging from mild to life-threatening. Reproductive hormones may confer some protection on the vascular system in women; however, it is unclear whether the same is true in men. Our goal was to evaluate the impact of four hormonal conditions (testosterone only, estradiol only, testosterone and estradiol, no testosterone and no estradiol) on microvascular vasodilator responsiveness in the skin of older men. We hypothesized that in older healthy men estradiol promotes cutaneous microvascular dilation during local warming of the skin and that testosterone inhibits this dilation. We measured skin blood flow using laser Doppler flowmetry during 35 min of cutaneous local warming to 42 degrees C in 52 healthy men (average age 67 +/- 1 yr). Subjects were randomized to one of the four hormonal conditions and were studied before and after hormone treatments. The endothelium-dependent vasodilator response to local warming was not different among groups either before or after hormone treatment. For example, with testosterone-only treatment this vasodilator response was 220 +/- 13 AU, and with estrogen only the response averaged 246 +/- 12 AU (P > 0.05). We conclude that, within the doses employed in the present study, testosterone and estradiol did not consistently alter cutaneous vasodilator responsiveness in healthy older men.  相似文献   

18.
Exposure to microgravity (weightlessness) is known to cause rapid bone and muscle losses. We have used the hind limb-suspended (HLS) rat model to simulate microgravity-induced musculoskeletal losses in order to assess resulting hormonal changes and to develop a novel pharmacological countermeasure. Previously, we demonstrated significant decreases in circulatory hormonal levels [serum thyroxin, 1,25(OH)2 vitamin D (p<0.05), and serum testosterone (p<0.001)] in HLS rats. Both thyroxin and 1,25(OH)2 vitamin D levels returned to normal soon after removal from HLS, while testosterone levels matched normal levels only after a further 3-4 weeks. However, even by day 42, bone mineral density (BMD) remained significantly lower, although serum hormones were back to normal. Because serum testosterone levels become undetectable in HLS rats, we hypothesized that the replacement of testosterone during HLS could prevent musculoskeletal losses. Based on these data, an intervention study was carried out to assess the efficacy of testosterone and synthetic anabolic steroid, nandrolone decanoate (ND), in prevention of weightlessness-induced musculoskeletal losses. HLS rats (control) had a significant reduction of muscle volume (42.9 -/+ 3.0, versus 56 -/+ 1.8 in ground control rats; p<0.01). Both testosterone and ND treatments prevented this muscle loss (51.5 -/+ 2 cm(3) and 51.6 -/+ 1.2, respectively; a 63% improvement, p<0.05). Similarly, BMD of the placebo-treated HLS rats was significantly lower than that of ground control rats (0.416 -/+ 0.011 versus 0.354 -/+0.014, p<0.05), and testosterone and ND prevented this bone loss (0.404 -/+ 0.013 versus. 0.409 -/+ 0.011, respectively). These data suggest that both testosterone and ND therapy can minimize the musculoskeletal losses associated with exposure to simulated weightlessness. Experiments using the combination of bisphosphonate and testosterone demonstrated complete protection of both muscle and bone in these HLS rats. Therefore, considering that: 1) testosterone is anabolic to osteoblasts and muscle cells and also decreases the rate of bone turnover, 2) serum testosterone levels are markedly suppressed in simulated weightlessness, and 3) testosterone replacement therapy prevented musculoskeletal losses in HLS rats, we propose that the musculoskeletal losses observed in this animal model (i.e., simulated microgravity) are related to their testosterone deficiency. Since serum sex hormones levels are markedly reduced in this model of simulated microgravity, androgen replacement with a bisphosphonate seems to be a rational counter.  相似文献   

19.
20.
At replacement doses, testosterone produces only modest increases in muscle strength and bone mineral density in older hypogonadal men. Although higher doses of testosterone are more anabolic, there is concern over increased adverse effects, notably prostate enlargement. We tested a novel strategy for obtaining robust anabolic effects without prostate enlargement. Orchiectomized (ORX) male rats were treated for 56 days with 1.0 mg testosterone/day, with and without 0.75 mg/day of the 5alpha-reductase inhibitor MK-434. Testosterone administration elevated the prostate dihydrotestosterone concentration and caused prostate enlargement. Both effects were inhibited by MK-434. ORX produced a catabolic state manifested in reduced food intake, blunted weight gain, reduced hemoglobin concentration, decreased kidney mass, and increased bone resorption, and in the proximal tibia there was both decreased cancellous bone volume and a decreased number of trabeculae. In soleus and extensor digitorum longus muscles, ORX reduced both the percentage of type I muscle fibers and the cross-sectional area of type 1 and 2 fibers. Testosterone administration caused a number of anabolic effects, including increases in food intake, hemoglobin concentration, and grip strength, and reversed the catabolic effects of ORX on bone. Testosterone administration also partially reversed ORX-induced changes in muscle fibers. In contrast to the prostate effects of testosterone, the effects on muscle, bone, and hemoglobin concentration were not blocked by MK-434. Our study demonstrates that the effects of testosterone on muscle and bone can be separated from the prostate effects and provides a testable strategy for combating sarcopenia and osteopenia in older hypogonadal men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号