首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugative elements often encode entry exclusion systems that convert host cells into poor recipients for identical or similar elements. The diversity of exclusion systems within families of conjugative elements has received little attention. We report here the most comprehensive study to date of the diversity of exclusion determinants within a single family of conjugative elements. Unexpectedly, our analyses indicate that there are only two exclusion groups among the diverse members of the SXT/R391 family of integrative conjugative elements.  相似文献   

2.
3.
Böltner D  Osborn AM 《Plasmid》2004,51(1):12-23
R391 and SXT are members of a group of eleven chromosome-borne conjugative elements found in the gamma-proteobacteria, whose members carry different antibiotic resistance traits. Recent genomic analysis of R391 and SXT revealed a highly conserved 'backbone' encoding integration/excision, conjugative transfer, and regulation functions, augmented by an array of phenotypic traits and transposable elements. In this study, PCR amplification and sequence analysis were employed to investigate the genomic structure of two further MGE of the R391 family, pMERPH (HgR) and R997 (ApR, SmR, SuR). R997 and pMERPH were found to be structurally related to R391 and SXT and share a number of virtually identical regions with them-including putative integration, conjugative transfer, and regulatory determinants-interrupted by variable DNA segments and transposable elements. The presence of a highly conserved backbone in the four elements strongly suggests their origin in a common ancestral element, which itself was a mosaic of sequences related to phages and plasmids. Subsequent genetic recombination and the acquisition of transposable elements resulted in the possession of variable phenotypic traits among the four MGE, and diversification into two distinct lineages, the first one including R391 and pMERPH, the second one containing SXT and R997.  相似文献   

4.
The SXT element, a conjugative, self-transmissible, integrating element (a constin) originally derived from a Vibrio cholerae O139 isolate from India, and IncJ element R391, originally derived from a South African Providencia rettgeri isolate, were found to be genetically and functionally related. Both of these constins integrate site specifically into the Escherichia coli chromosome at an identical attachment site within the 5' end of prfC. They encode nearly identical integrases, which are required for chromosomal integration, excision, and extrachromosomal circularization of these elements, and they have similar tra genes. Therefore, these closely related constins have virtually identical mechanisms for chromosomal integration and dissemination. The presence of either element in a recipient cell did not significantly reduce its ability to acquire the other element, indicating that R391 and SXT do not encode surface exclusion determinants. In cells harboring both elements, SXT and R391 were integrated in tandem fashion on the chromosome, and homologous recombination appeared to play little or no role in the formation of these arrays. Interference between R391 and SXT was detected by measuring the frequency of loss of an unselected resident element upon introduction of a second selected element. In these assays, R391 was found to have a stronger effect on SXT stability than vice versa. The level of expression and/or activity of the donor and recipient integrases may play a role in the interference between these two related constins.  相似文献   

5.
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore.  相似文献   

6.
The conjugative, chromosomally integrating element R391 is the archetype of the IncJ class of mobile genetic elements. Originally found in a South African Providencia rettgeri strain, R391 carries antibiotic and mercury resistance traits, as well as genes involved in mutagenic DNA repair. While initially described as a plasmid, R391 has subsequently been shown to be integrated into the bacterial chromosome, employing a phage-like integration mechanism closely related to that of the SXT element from Vibrio cholerae O139. Analysis of the complete 89-kb nucleotide sequence of R391 has revealed a mosaic structure consisting of elements originating in bacteriophages and plasmids and of transposable elements. A total of 96 open reading frames were identified; of these, 30 could not be assigned a function. Sequence similarity suggests a relationship of large sections of R391 to sequences from Salmonella, in particular those corresponding to the putative conjugative transfer proteins, which are related to the IncHI1 plasmid R27. A composite transposon carrying the kanamycin resistance gene and a novel insertion element were identified. Challenging the previous assumption that IncJ elements are plasmids, no plasmid replicon was identified on R391, suggesting that they cannot replicate autonomously.  相似文献   

7.
In Vibrio cholerae, the second messenger bis‐(3′?5′)‐cyclic dimeric guanosine monophosphate (c‐di‐GMP) increases exopolysaccharides production and biofilm formation and decreases virulence and motility. As such, c‐di‐GMP is considered an important player in the transition from the host to persistence in the environment. c‐di‐GMP level is regulated through a complex network of more than 60 chromosomal genes encoding predicted diguanylate cyclases (DGCs) and phosphodiesterases. Herein we report the characterization of two additional DGCs, DgcK and DgcL, encoded by integrating conjugative elements (ICEs) belonging to the SXT/R391 family. SXT/R391 ICEs are self‐transmissible mobile elements that are widespread among vibrios and several species of enterobacteria. We found that deletion of dgcL increases the motility of V. cholerae, that overexpression of DgcK or DgcL modulates gene expression, biofilm formation and bacterial motility, and that a single amino acid change in the active site of either enzyme abolishes these phenotypes. We also show that DgcK and DgcL are able to synthesize c‐di‐GMP in vitro from GTP. DgcK was found to co‐purify with non‐covalently bound flavin mononucleotide (FMN). DgcL's enzymatic activity was augmented upon phosphorylation of its phosphorylatable response‐regulator domain suggesting that DgcL is part of a two‐component signal transduction system. Interestingly, we found orthologues of dgcK and dgcL in several SXT/R391 ICEs from two species of Vibrio originating from Asia, Africa and Central America. We propose that besides conferring usual antibiotic resistances, dgcKL‐bearing SXT/R391 ICEs could enhance the survival of vibrios in aquatic environments by increasing c‐di‐GMP level.  相似文献   

8.
The genes mediating the conjugative transfer of the 52-kb staphylococcal plasmid pGO1 are within a 14.4-kb gene cluster designated trs. However, a clone containing trs alone cannot transfer independently and no candidate oriT has been found within or contiguous to trs. In this study, we identified a 1,987-bp open reading frame (ORF) 24 kb 3' and 13 kb 5' to trs that was essential for conjugative transfer: transposon insertions into the ORF abolished transfer and a plasmid containing the ORF could complement these transposon-inactivated pGO1 mutants for transfer. Analysis of the nucleotide sequence of this ORF revealed significant homology between the amino terminus of its predicted protein and those of several single-stranded endonucleases. In addition, a 12-bp DNA sequence located 100 bp 5' to the ORF's translational start site was identical to the oriT sequences of the conjugative or mobilizable plasmids RSF1010, pTF1, R1162, pSC101, and pIP501. The ability of the ORF, designated nes (for nicking enzyme of staphylococci), to generate a single-stranded nick at the oriT was demonstrated in Escherichia coli by alkaline gel and DNA sequence analysis of open circular plasmid DNA. Plasmids that could be converted to the open circular form by the presence of oriT and nes could also be mobilized at high frequency into Staphylococcus aureus recipients with a second plasmid containing only trs. We propose that the 14.4 kb of trs and the approximately 2.2 kb of the oriT-nes region, coupled with an origin of replication, make up the minimal staphylococcal conjugative replicon.  相似文献   

9.
The origin of transfer (oriT) of the 18-kb conjugative transposon Tn916 has been localized to a 466-bp region which spans nucleotides 15215 to 15681 on the transposon map. The oriT lies within an intercistronic region between open reading frames ORF20 and ORF21 that contains six sets of inverted repeats ranging from 10 to 20 bp in size. The segment contains three sequences showing identity in 9 of 12 bp to the consensus nicking site (nic) of the IncP family of conjugative plasmids found in gram-negative bacteria. Overlapping one of these sequences is a region similar to the nic site of the F plasmid. Functionality was based on the ability of the oriT-containing sequence to provide a cis-acting mobilization of chimeras involving the shuttle vector pWM401 in response to activation in trans by an intact chromosome-borne transposon Tn916 delta E. Cloned segments of 466 or 376 nucleotides resulted in unselected cotransfer of the plasmid at levels of about 40% when selection was for Tn916 delta E, whereas a 110-bp segment resulted in cotransfer at a frequency of about 7%. Mobilization was specific in that gram-positive plasmids, such as pAD1 and pAM beta 1, and the gram-negative plasmids pOX38 (a derivative of F) and RP1 did not mobilize oriT-containing chimeras.  相似文献   

10.
11.
Summary The origin of transfer (oriT) is the sequence within which conjugal transfer of plasmid DNA is initiated, and is absolutely required in cis for plasmid mobilization. We have cloned oriT from the 52 kb IncN plasmid R46 on a 600 bp fragment, and mapped the limits of the relevant sequence by deletion analysis and transposon mutagenesis. The nucleotide sequence of the oriT region contains 13 direct repeats of an 11 bp consensus sequence, 3 different pairs of 10 bp inverted repeats, and a segment that is extremely A-T rich. The direct repeats are within a region required for high frequency transfer and their sequence is such that their periodic alignment along the helix may induce curvature of the DNA. Analysis of Tn1725 insertions within the sequenced fragment of R46 revealed that, unlike most other transposons, transposition of Tn1725 can cause target sequence duplications of three different sizes.  相似文献   

12.
13.
A segment of R1162 DNA containing genes for conjugative mobilization (Mob) and the origin of transfer (oriT) was integrated into the Escherichia coli chromosome. Bacterial genes were transferred in a polar fashion during conjugative mobilization of the integrated segment by a self-transmissible plasmid vector. The direction of transfer, together with the properties of mutated derivatives of oriT, indicate that initial cleavage of oriT, and subsequent religation after transfer, entail different mechanisms that can be distinguished genetically.  相似文献   

14.
Purified integrase protein (Int) of the conjugative transposon Tn916 was shown, using nuclease protection experiments, to bind specifically to a site within the origin of conjugal transfer of the transposon, oriT. A sequence similar to the ends of the transposon that are bound by the C-terminal DNA-binding domain of Int was present in the protected region. However, Int binding to oriT required both the N- and C-terminal DNA-binding domains of Int, and the pattern of nuclease protection differed from that observed when Int binds to the transposon ends and flanking DNA. Binding of Int to oriT may be part of a mechanism to prevent premature conjugal transfer of Tn916 prior to excision from the donor DNA.  相似文献   

15.
【目的】研究萘啶酸、诺氟沙星、卡那霉素3种抗生素对溶藻弧菌(Vibrio alginolyticus)SXT/R391元件ICEVal A056-1转移频率的影响。【方法】利用PCR检测溶藻弧菌A056中ICEVal A056-1的自我剪切、转移潜力。通过溶藻弧菌A056与大肠杆菌菌株VB111的接合实验,研究溶藻弧菌分别在含不同浓度萘啶酸、诺氟沙星、卡那霉素的LB培养基中培养15 min或30 min后,ICEVal A056-1转移频率的变化规律。【结果】溶藻弧菌A056细胞中有环状形式的ICEVal A056-1分子存在,具有水平转移潜力;溶藻弧菌A056在含40μg/m L萘啶酸的LB中培养30 min后,ICEVal A056-1转移频率是对照组的19.59倍;在含50μg/m L诺氟沙星的LB中培养15 min后,ICEVal A056-1转移频率是对照组的31.25倍;在含不同浓度卡那霉素的LB中培养30 min后,ICEVal A056-1转移频率与对照组没有显著差别。【结论】部分抗生素的使用可以明显促进溶藻弧菌ICEVal A056-1向大肠杆菌的转移,因此海洋环境中抗生素的滥用及随意排放很可能加剧ICEs(integrating conjugative elements)从溶藻弧菌到其他细菌的传播。  相似文献   

16.
17.
R1162 is efficiently comobilized during conjugative transfer of the self-transmissible plasmid R751. Bacteriophage M13 derivatives that contain two directly repeated copies of oriT, the site on R1162 DNA required in cis for mobilization, were constructed. Phage DNA molecules underwent recombination during infection of Escherichia coli, with the product retaining a single functional copy of oriT. Recombination was strand specific and depended on R1162 gene products involved in mobilization, but did not require the self-transmissible plasmid vector. Two genes were identified, one essential for recombination and the other affecting the frequency of recombination. Recombination of bacteriophage DNA could form the basis of a simple model for some of the events occurring during conjugation without the complexity of a true mating system.  相似文献   

18.
The incompatibility between the chromosomally integrating, conjugative transposon-like, IncJ elements R997 (ampicillin resistant) and R391 (kanamycin resistant) was examined by constructing strains harbouring both elements. Unusually, recA(+) strains harbouring the resistance determinants of both elements could be isolated but all strains lacked detectable extrachromosomal DNA. The phenotypic characteristics and transfer patterns observed suggested the formation of recombinant hybrids rather than strains harbouring both elements independently. Formation of strains harbouring two IncJ elements in a recA background was thus examined and resulted in the visualisation of extrachromosomal DNA. When R391 was transferred to a recA strain containing integrated R997, both elements co-existed stably and resulted in the isolation of a plasmid of 93.9 kb. When R997 was transferred to a recA strain harbouring an integrated R391, a plasmid of 85 kb was isolated. Comparison of restriction patterns for both elements revealed many common and several distinct fragments indicating a close physical relationship. These data suggest that although IncJ elements normally integrate at a unique site in the Escherichia coli chromosome, they possess the ability for autonomous replication which becomes manifest in a recA background when this site is occupied. This observation has implications for the nature of the incompatibility associated with IncJ elements and also provides a reliable method for isolating IncJ elements for molecular characterisation.  相似文献   

19.
20.
P N Hengen  V N Iyer 《BioTechniques》1992,13(1):56-8, 60, 62
Plasmid constructs are described that carry retrievable DNA cassettes containing the origin of transfer region (oriT) from two broad-host-range plasmids. Restriction of these high copy number plasmids with any one of a variety of enzymes yields a linear DNA fragment of convenient size containing the oriT region of either pCUI or RK2. This DNA can be ligated into any vector or recombinant plasmid containing a compatible enzyme site and can be easily identified by size on an agarose gel. Any plasmid can therefore be mobilized using a number of helper strains or conjugative plasmids derived from the parental plasmids. In addition, the cassettes can be used for a variety of genetic manipulations including "selectable" linker mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号