首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5-S RNA (A) and the proteins L 18 (B) and L25 (C) from Escherichia coli ribosomes form a ternary complex of the type ABC with a stepwise stability constant, log K111 approximately equal to 6.5. This is indicated from X-ray scattering titrations recorded at 21 degrees C in ribosomal reconstitutional buffer. When the ternary ABC complex forms there is only a limited change in the scattering curve compared to that of 5-S RNA, indicating that 5-S RNA does not undergo a major conformational change during the complex formation. The increase in the radius of gyration from 3.61 nm (5-S RNA) to 3.95 nm (ABC complex) as well as the experimental scattering curve can be explained by models where it is assumed that the elongated L 18 and L25 models are quite far from the electron density centre and where the protein molecules interact mainly with the minor arms of the supposed Y-shaped 5-S RNA molecule.  相似文献   

2.
1. X-ray small-angle scattering of human plasma lipoprotein B of the low-density fraction (rho = 1.016--1.060 g.cm-3) has been recorded to high precision at different electron density contrasts. 2. The overall structure of the particles is characterized by a quasi-spherical shape and radial symmetry. A maximum diameter of 23 nm and a molecular weight of 2.4 X 10(6) have been determined. 3. The internal structure is described in terms of a model consisting of spherical layers with different electron densities indicating that the neutral lipids are arranged in the core of the molecule up to a radius of about 8 nm surrounded by a monolayer of free cholesterol, phospholipids and protein. The neural lipids are shown to be in an ordered, liquid crystalline state at 4 degrees C and to undergo a thermotropic transition into a disordered state at higher temperatures.  相似文献   

3.
The native high molecular mass form of alpha-crystallin, the most important soluble protein in the eye lens, and its low molecular mass form obtained at 37 degrees C in dilute solutions were investigated by synchrotron radiation small-angle X-ray scattering. The alpha-crystallin solutions are polydisperse and good fits to the experimental data can be obtained using distributions of spheres with radii varying between about 5 and 10 nm. In spite of the polydispersity, two different ab initio methods were used to retrieve low resolution shapes from the scattering data. These shapes correspond to the z-average structure of the oligomers. In the absence of any symmetry constraints, the scattering curves of the two forms of alpha-crystallin yield bean-like shapes. The shape corresponding to the low molecular mass form has about 20% less mass at the periphery. Imposing tetrahedral symmetry on the average structures worsens the fit to the experimental data. We emphasized the apparent contradiction between hydrodynamic and molecular properties of alpha-crystallin. An explanation was put forward based on the presence of solvent-exposed flexible C-terminal extensions. We present two bead models ('hollow globule with tentacles' and 'bean with tentacles') based on NMR and cryo-electron microscopy studies and discuss how well they correspond with our data from X-ray scattering, light scattering and analytical ultracentrifugation.  相似文献   

4.
5.
6.
Visual arrestin is converted from a 'basal' state to an 'activated' state by interaction with the phosphorylated C-terminus of photoactivated rhodopsin (R*), but the conformational changes in arrestin that lead to activation are unknown. Small-angle X-ray scattering (SAXS) was used to investigate the solution structure of arrestin and characterize changes attendant upon activation. Wild-type arrestin forms dimers with a dissociation constant of 60 micro m. Small conformational changes, consistent with local movements of loops or the mobile N- or C-termini of arrestin, were observed in the presence of a phosphopeptide corresponding to the C-terminus of rhodopsin, and with an R175Q mutant. Because both the phosphopeptide and the R175Q mutation promote binding to unphosphorylated R*, we conclude that arrestin is activated by subtle conformational changes. Most of the arrestin will be in a dimeric state in vivo. Using the arrestin structure as a guide [Hirsch, J.A., Schubert, C., Gurevich, V.V. & Sigler, P.B. (1999) Cell 97, 257-269], we have identified a model for the arrestin dimer that is consistent with our SAXS data. In this model, dimerization is mediated by the C-terminal domain of arrestin, leaving the N-terminal domains free for interaction with phosphorylated R*.  相似文献   

7.
We present evidence from small-angle X-ray scattering synchrotron experiments that porcine stomach mucin (MUC6) contains a double-globular comb structure. Analysis of the amino acid sequence of the peptide comb backbone indicates that the globular structure is determined by both the charge and hydrophobicity of the amino acids and the placement of the short hydrophilic carbohydrate side chains (approximately 2.5 nm). The double-globular structure is, thus, due to a block copolymer type hydrophobic polyampholyte charge instability in contrast to the random copolymer instabilities observed previously with synthetic polyelectrolytes (particularly polystyrene sulfonates). Careful filtering was required to exclude multimonomer aggregates from the X-ray measurements. A double Guinier analysis ( R g approximately 26 nm) and a double power law fit are consistent with two globules per chain in low salt conditions. The average radius of the globules is approximately 10 nm in salt- free condition (double Guinier fit) and the average distance of intrachain separation of the globules is 48 nm. The addition of salt causes a significant decrease in the radius of gyration (14 nm 100 mM NaCl) of the chains and is attributed to the contraction of the glycosylated peptide spacer between the two globules (the globular size continues to be approximately 10 nm and the globule separation is then 18 nm). Without salt, the scaling of the semidilute mesh size (xi) as a function of the mucin concentration (c) is xi approximately c (-0.45)compared with xi approximately c (-0.28) in high salt conditions, highlighting the globular nature of the chains. In contrast, hydrophilic flexible polyelectrolytes have a stronger concentration dependence of xi when excess salt is added.  相似文献   

8.
The small-angle X-ray scattering was observed from beta-casein micelles in 0.2 M phosphate buffer (pH 6.7) with varying temperatures. An oblate ellipsoid of a rigid core with a thin soft layer was proposed as a probable model of the beta-casein micellar structure, according to the results of the model optimization with simple triaxial bodies. Here the axial ratio was found to decrease and the micelle to become spherical when the polymerization proceeds with temperature. The consistency of the present model was examined with the results of hydrodynamic measurements published previously.  相似文献   

9.
The structure of alpha-crustacyanin, the blue carotenoprotein of lobster (Homarus gammarus) carapace, has been investigated for the first time using small-angle X-ray scattering. In this paper, we have determined the dimensions of this protein composed of eight heterodimeric subunits of beta-crustacyanin. Analysis of the scattering spectra and estimation of the shape of alpha-crustacyanin show that the protein fits into a cylinder with an axial length of 238 A and a radius of 47.5 A, in which the eight beta-crustacyanin molecules are probably arranged in a helical manner.  相似文献   

10.
11.
Small-angle X-ray and neutron scattering have been used to characterize the solution structure of rabbit skeletal phosphorylase kinase. The radius of gyration of the unactivated holoenzyme determined from neutron scattering is 94 A, and its maximum dimension is approximately 275-295 A. A planar model has been constructed that is in general agreement with the dimensions of the transmission electron microscope images of negatively stained phosphorylase kinase and that gives values for the radius of gyration, maximum linear dimension, and a pair distribution function for the structure that are consistent with the scattering data.  相似文献   

12.
Data from small-angle X-ray and neutron scattering and ultracentrifugation experiments on solutions of malate dehydrogenase from Halobacterium maris mortui are analysed together to yield a model for the enzyme particle formed by the protein and its interactions with water and salt in the solvent. The halophilic enzyme is stable only in high concentrations of salt and the model has structural features that are absent from non-halophilic malate dehydrogenase. The complementarity of the information derived from the three experimental methods is discussed extensively and quantitatively. It derives from the fact that mass density (ultracentrifugation), electron density (X-rays) and neutron scattering density are independent of each other. Each method gives a different "view" of the same particle, and an analysis of the combined data provided thermodynamic and structural parameters with, apart from the chemical composition of the solutions, only one other assumption: a constant partial specific volume for water equal to 1.00 cm3 g-1. Both the insights gained by this novel approach and its limitations are carefully pointed out. In solvents between 1 M and 5 M-NaCl, the enzyme forms a particle of invariant volume, consisting of a protein dimer (87,000 g mol-1) with which are associated 0.87 g of water and 0.35 g of salt per gram of protein. The partial specific volume of the protein calculated from the combined experimental data is 0.753(+/- 0.030) cm3 g-1, in good agreement with the value calculated from the amino acid composition. The particle has a radius of gyration of 32 A and an equivalent Stokes radius of 43 A. By combining the data from the X-ray and neutron scattering studies, the radii of gyration of the protein moiety alone and of the associated water and salt distribution were calculated. They are 28 A and about 40 A, respectively. The large-angle scattering curves show that the shapes of the particle and of the protein moiety alone are similar. At very low resolution they can be approximated by an ellipsoid of axial ratio 1:1:0.6 (or 1:1:1.5). At higher resolution, it becomes apparent that the particle has a significantly larger interface with solvent than an homogeneous ellipsoid or globular protein. The model has a globular protein core similar to non-halophilic malate dehydrogenase, with about 20% of the protein extending loosely out of the core, forming the large interface with solvent. The main interactions with water and salt take place on this outer part.  相似文献   

13.
Small-angle X-ray scattering has been used to study the structure of the multimeric complexes that form between double-stranded DNA and the archaeal chromatin protein Sac7d from Sulfolobus acidocaldarius. Scattering data from complexes of Sac7d with a defined 32-mer oligonucleotide, with poly[d(GC)], and with E. coli DNA indicate that the protein binds along the surface of an extended DNA structure. Molecular models of fully saturated Sac7d/DNA complexes were constructed using constraints from crystal structure and solution binding data. Conformational space was searched systematically by varying the parameters of the models within the constrained set to find the best fits between the X-ray scattering data and simulated scattering curves. The best fits were obtained for models composed of repeating segments of B-DNA with sharp kinks at contiguous protein binding sites. The results are consistent with extrapolation of the X-ray crystal structure of a 1:1 Sac7d/octanucleotide complex [Robinson, H., et al. (1998) Nature 392, 202-205] to polymeric DNA. The DNA conformation in our multimeric Sac7d/DNA model has the base pairs tilted by about 35 degrees and displaced 3 A from the helix axis. There is a large roll between two base pairs at the protein-induced kink site, resulting in an overall bending angle of about 70 degrees for Sac7d binding. Regularly repeating bends in the fully saturated complex result in a zigzag structure with negligible compaction of DNA. The Sac7d molecules in the model form a unique structure with two left-handed helical ribbons winding around the outside of the right-handed duplex DNA.  相似文献   

14.
15.
X-ray neutron solution scattering experiments have been done to investigate the influence of the binding of ribosomal protein S1 on the conformation of the 30-S ribosomal subunit of Escherichia coli. The following conclusions were made. 1. The alterations (if any) in conformation of the non-S1 parts of the 30-S subunit induced by S1 binding are too small to be detected (less than 0.1 nm change in radius of gyration). 2. The center of gravity of protein S1 bound to the 30-S subunit is quite far from the center of gravity of the particle (approximately 7.5 nm).  相似文献   

16.
Small-angle X-ray scattering studies have been conducted on solutions of 11S and 7S globulins isolated from peas (Pisum sativum cv. Filby), and the radii of gyration and molecular weights determined. The general features of the scattering curves were similar to those reported for other seed storage proteins.  相似文献   

17.
This paper presents some data on a human Waldenström immunoglobulin M.IgMGAL based on small-angle X-ray scattering data. the IgMGAL had molecular weight 970 000, volume 1760 nm3, radius of gyration 12 nm and maximum diameter 37 nm. The conclusions from various model calculations are discussed. A flat, star-shaped model is compatible both with X-ray scattering data and electron micrographs.  相似文献   

18.
Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku?erka et al. (Biophys J 95:2356–2367, 2008; J Phys Chem B 116:232–239, 2012). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent to these models. In particular, it is recognized that standalone data do not contain enough information to fully resolve the structure of naturally disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structure parameters, including the much-sought-after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data, as well as the implementation of local volume conservation within the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.  相似文献   

19.
A number of glycyl-tRNA synthetase (glyS) mutants have been isolated as glycine auxotrophs in Salmonella typhimurium. One of the mutants, glyS141, has a glycyl-tRNA synthetase with a Km for glycine that is 700 times higher than the wild-typeKm. Prototrophic revertants glyS141 occur at high spontaneous frequencies (>5 × 10?5). The majority of these revertants contain large tandem duplications including the mutant glyS gene. Some of the duplications cover at least 22% of the chromosome. The duplications overlap with a large duplication isolated previously by a different selection procedure (Straus &; Hoffmann, 1975). Evidence has been obtained which suggests that formation of the duplications may occur by recA-dependent recombination. The Gly+ phenotype of revertants carrying the duplications does not appear to be explainable simply by the increased gene dosage of glyS.  相似文献   

20.
Structural changes of barnase during folding were investigated using time-resolved small-angle X-ray scattering (SAXS). The folding of barnase involves a burst-phase intermediate, sometimes designated as the denatured state under physiological conditions, Dphys, and a second hidden intermediate. Equilibrium SAXS measurements showed that the radius of gyration (Rg) of the guanidine unfolded state (U) is 26.9 ± 0.7 Å, which remains largely constant over a wide denaturant concentration range. Time-resolved SAXS measurements showed that the Rg value extrapolated from kinetic Rg data to time zero, Rg,0, is 24.3 ± 0.1 Å, which is smaller than that of U but which is expanded from that of folding intermediates of other proteins with similar chain lengths (19 Å). After the burst-phase change, a single-exponential reduction in Rg2 was observed, which corresponds to the formation of the native state for the major component containing the native trans proline isomer. We estimated Rg of the minor component of Dphys containing the non-native cis proline isomer (Dphys,cis) to be 25.7 ± 0.6 Å. Moreover, Rg of the major component of Dphys containing the native proline isomer (Dphys,tra) was estimated as 23.9 ± 0.2 Å based on Rg,0. Consequently, both components of the burst-phase intermediate of barnase (Dphys,tra and Dphys,cis) are still largely expanded. It was inferred that Dphys possesses the N-terminal helix and the center of the β-sheet formed independently and that the formation of the remainder of the protein occurs in the slower phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号