首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
致病岛是病原微生物通过基因水平转移获得的外源DNA,它是在研究致病性肠道菌的基因组结构和致病性的基础上发展起来的,并在其他革兰氏阴性和阳性致病菌中得到证实。本就各类病原菌致病岛的研究近况作一综述,同时介绍了致病岛的特征,讨论了致病岛在微生物进化中的意义及与tRNA基因的关系。  相似文献   

2.
Summary Two P-elements (bif1 and bif2) were isolated from a genomic library ofDrosophila bifasciata. Both elements are internally deleted and have lost the coding capacity for a functional transposase. One of the elements (bif2) contains an insert consisting of a repetitive sequence. The terminal inverted repeats and the segments necessary for passive mobility are well conserved. Element bif2 has retained rudiments of the coding sequence of exon 0 and exon 3, but the reading frame is destroyed by insertions and deletions. The comparison of theD. bifasciata P-elements with P-elements ofDrosophila melanogaster andDrosophila nebulosa reveals that the two latter sequences are more similar to each other than either of them is to theD. bifasciata elements. This finding contradicts the phylogenetic relationship of the species and can be taken as an indirect but unequivocal evidence for recent horizontal gene transfer from a relative ofD. nebulosa to the gene pool ofD. melanogaster. The P-elements ofD. bifasciata are phylogenetically ancient and have evolved independently for about 50 million years. A higher substitution rate at the third codon position as well as a predominance of conservative replacements at the amino acid level indicates that the P-elements ofD. bifasciata have been under selective constraint over a long period and that immobilization has occurred only recently.  相似文献   

3.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号