首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Variation in limb proportions between prehistoric Jomon and Yayoi people of Japan are explored by this study. Jomon people were the descendents of Pleistocene nomads who migrated to the Japanese Islands around 30,000 yBP. Phenotypic and genotypic evidence indicates that Yayoi people were recent migrants to Japan from continental Northeast Asia who likely interbred with Jomon foragers. Limb proportions of Jomon and Yayoi people were compared using RMA regression and \"Quick-Test\" calculations to investigate relative variability between these two groups. Cluster and principal components analyses were performed on size-standardized limb lengths and used to compare Jomon and Yayoi people with other groups from various climatic zones. Elongated distal relative to proximal limb lengths were observed among Jomon compared to Yayoi people. Jomon limb proportions were similar to human groups from temperate/tropical climates at lower latitudes, while Yayoi limb proportions more closely resemble groups from colder climates at higher latitudes. Limb proportional similarities with groups from warmer environments among Jomon foragers likely reflect morphological changes following Pleistocene colonization of the Japanese Islands. Cold-derived limb proportions among the Yayoi people likely indicate retention of these traits following comparatively recent migrations to the Japanese Islands. Changes in limb proportions experienced by Jomon foragers and retention of cold-derived limb proportions among Yayoi people conform to previous findings that report changes in these proportions following long-standing evolution in a specific environment.  相似文献   

2.
    
Ecogeographic rules that describe quantitative relationships between morphologies and climate might help us predict how morphometrics of animals was shaped by local temperature or humidity. Although the ecogeographic rules had been widely tested in animals of Europe and North America, they had not been fully validated for species in regions that are less studied. Here, we investigate the morphometric variation of a widely distributed East Asian passerine, the vinous‐throated parrotbill (Sinosuthora webbiana), to test whether its morphological variation conforms to the prediction of Bergmann''s rule, Allen''s rules, and Gloger''s rule. We at first described the climatic niche of S. webbiana from occurrence records (n = 7838) and specimen records (n = 290). The results of analysis of covariance (ANCOVA) suggested that the plumage coloration of these parrotbills was darker in wetter/warmer environments following Gloger''s rule. However, their appendage size (culmen length, beak volume, tarsi length) was larger in colder environments, the opposite of the predictions of Allen''s rule. Similarly, their body size (wing length) was larger in warmer environments, the opposite of the predictions of Bergmann''s rule. Such disconformity to both Bergmann''s rule and Allen''s rule suggests that the evolution of morphological variations is likely governed by multiple selection forces rather than dominated by thermoregulation. Our results suggest that these ecogeographic rules should be validated prior to forecasting biological responses to climate change especially for species in less‐studied regions.  相似文献   

3.
Intraspecific latitudinal clines in the body size of terrestrial vertebrates, where members of the same species are larger at higher latitudes, are widely interpreted as evidence for natural selection and adaptation to local climate. These clines are predicted to shift in response to climate change. We used museum specimens to measure changes in the body size of eight passerine bird species from south-eastern Australia over approximately the last 100 years. Four species showed significant decreases in body size (1.8–3.6% of wing length) and a shift in latitudinal cline over that period, and a meta-analysis demonstrated a consistent trend across all eight species. Southern high-latitude populations now display the body sizes typical of more northern populations pre-1950, equivalent to a 7° shift in latitude. Using ptilochronology, we found no evidence that these morphological changes were a plastic response to changes in nutrition, a likely non-genetic mechanism for the pattern observed. Our results demonstrate a generalized response by eight avian species to some major environmental change over the last 100 years or so, probably global warming.  相似文献   

4.
    
As temperatures increase, there is growing evidence that species across much of the tree of life are getting smaller. These climate change-driven size reductions are often interpreted as a temporal analogue of the observation that individuals within a species tend to be smaller in the warmer parts of the species'' range. For ectotherms, there has been a broad effort to understand the role of developmental plasticity in temperature–size relationships, but in endotherms, this mechanism has received relatively little attention in favour of selection-based explanations. We review the evidence for a role of developmental plasticity in warming-driven size reductions in birds and highlight insulin-like growth factors as a potential mechanism underlying plastic responses to temperature in endotherms. We find that, as with ectotherms, changes in temperature during development can result in shifts in body size in birds, with size reductions associated with warmer temperatures being the most frequent association. This suggests developmental plasticity may be an important, but largely overlooked, mechanism underlying warming-driven size reductions in endotherms. Plasticity and natural selection have very different constraining forces, thus understanding the mechanism linking temperature and body size in endotherms has broad implications for predicting future impacts of climate change on biodiversity.  相似文献   

5.
There has been a surge of interest in phenotypic plasticity in the last two decades. Most studies, however, are being carried out within relatively narrow disciplinary frameworks. Consequently, researchers differ not only in their scientific agenda; they often use different terminologies and conceptual frameworks even when studying the very same phenomena. The diversity of approaches has often generated parallel bodies of theory on subjects that can be best understood in broader interdisciplinary terms. This special issue points out the differences between the concepts and questions that are characteristic of various approaches. Bridging all gulfs may be impossible and not necessarily desirable, yet, awareness of the varied approaches should be instrumental in promoting interdisciplinary advances. It is the contribution to such awareness that is the major purpose of this special issue, and for this reason it deals with molecular, physiological, ecological and evolutionary approaches to the study of developmental plasticity. So as to focus the discussion, six topics have been selected, ranging from the fundamental essence of developmental plasticity to its implications to ecology and evolution. These topics were considered by scholars who were chosen for the diversity of their research, not only their expertise. Rather than a comprehensive body of theory, the current issue thus seeks the diversity of opinions on the discussed topics. It is hoped that the confrontation, in its original Latin sense, which includes bringing together and discussion, of scholars who are studying these phenomena at very different levels and from different points of view will generate new insights and promote future interdisciplinary research.  相似文献   

6.
While phenotypic plasticity has been the focus of much research and debate in the recent ecological and evolutionary literature, the developmental nature of the phenomenon has been mostly overlooked. A developmental perspective must ultimately be an integral part of our understanding of how organisms cope with heterogeneous environments. In this paper I use the rapid cycling Arabidopsis thaliana to address the following questions concerning developmental plasticity. (1) Are there genetic and/or environmental differences in parameters describing ontogenetic trajectories? (2) Is ontogenetic variation produced by differences in genotypes and/or environments for two crucial traits of the reproductive phase of the life cycle, stem elongation and flower production? (3) Is there ontogenetic variability for the correlation between the two characters? I found genetic variation, plasticity, and variation for plasticity affecting at least some of the growth parameters, indicating potential for evolution via heterochronic shifts in ontogenetic trajectories. Within-population differences among families are determined before the onset of the reproductive phase, while among-population variation is the result of divergence during the reproductive phase of the ontogeny. Finally, the ontogenetic profiles of character correlations are very distinct between the ecologically meaningful categories of early- and late-flowering “ecotypes” in this species, and show susceptibility to environmental change.  相似文献   

7.
Abstract Individuals can adapt to heterogeneity in their environment through either local adaptation or phenotypic plasticity. Colour forms of the ladybird Harmonia axyridis are a classic example of local adaptation, in which the frequency of melanic forms varies greatly between populations. In some populations, there are also large seasonal changes in allele frequency, with melanism being costly in summer and beneficial in winter. We report that the non‐melanic morph of H. axyridis dramatically increases its degree of melanization at cold temperatures. Furthermore, there is genetic variation in reaction norms, with different families responding to temperature in different ways. Variation at different spatial and temporal scales appears to have selected for either genetic or phenotypically plastic adaptations, which may be important in thermoregulation. As melanism is known to have a large effect on fitness in H. axyridis, this plasticity of melanization may have hastened its spread as an invasive species.  相似文献   

8.
    
Animals are predicted to shrink and shape-shift as the climate warms, declining in size, while their appendages lengthen. Determining which types of species are undergoing these morphological changes, and why, is critical to understanding species responses to global change, including potential adaptation to climate warming. We examine body size and bill length changes in 25 shorebird species using extensive field data (> 200,000 observations) collected over 46 years (1975–2021) by community scientists. We show widespread body size declines over time, and after short-term exposure to warmer summers. Meanwhile, shorebird bills are lengthening over time but shorten after hot summers. Shrinking and shape-shifting patterns are consistent across ecologically diverse shorebirds from tropical and temperate Australia, are more pronounced in smaller species and vary according to migration behaviour. These widespread morphological changes could be explained by multiple drivers, including adaptive and maladaptive responses to nutritional stress, or by thermal adaptation to climate warming.  相似文献   

9.
Gloger''s rule posits that darker birds are found more often in humid environments than in arid ones, especially in the tropics. Accordingly, desert-inhabiting animals tend to be light-colored. This rule is also true for certain mammalian groups, including humans. Gloger''s rule is manifested at 2 levels: (1) at the species level (different populations of the same species have different pigmentation at different latitudes), and (2) at the species assembly level (different taxa at a certain geography have different pigmentation than other taxa found at different habitats or latitudes). Concerning plants, Gloger''s rule was first proposed to operate in many plant species growing in sand dunes, sandy shores and in deserts, because of being white, whitish, or silver colored, based on white trichomes, because of sand grains and clay particles glued to sticky glandular trichomes, or because of light-colored waxes. Recently, Gloger''s rule was shown to also be true at the intraspecific level in relation to protection of anthers from UV irradiation. While Gloger''s rule is true in certain plant taxa and ecologies, there are others where “anti-Gloger” coloration patterns exist. In some of these the selective agents are known and in others they are not. I present both Gloger and “anti-Gloger” cases and argue that this largely neglected aspect of plant biology deserves much more research attention.  相似文献   

10.
    
Environment and behavior are widely understood to affect bird morphology, which can lead to differences among subspecies or populations within a wide-ranging species. Several patterns of latitudinal gradients in morphology have been described, though Allen's and Bergmann's rules are the most well-known and have been tested and confirmed across a diversity of taxa and species. These state that individuals at higher latitudes will have larger bodies (Bergmann's Rule) but smaller extremities (Allen's Rule) to conserve heat in colder climates. Migratory behavior also can influence avian morphology, particularly wing shape, where migratory birds tend to have longer, more pointed wings than residents. The Black Oystercatcher (Haematopus bachmani) is a large, partially migratory shorebird species restricted to intertidal habitats and distributed from Alaska to Baja California, spanning about 35° of latitude. A large proportion of Black Oystercatchers that breed in Alaska are migratory, where nearly all individuals breeding in British Columbia through the southern end of their range remain resident through the annual cycle. Their broad latitudinal range and diversity in migratory behavior may drive geographic variation in morphology. Here we evaluate three explanations for geographic variation in morphology of the Black Oystercatcher using data from seven sites across two regions: Alaska and British Columbia. We found evidence consistent with Allen's but not Bergmann's rule; birds in Alaska have shorter bills than those in British Columbia, and these findings held when controlling for body size using wing length. Despite regional differences in migratory behavior, we detected no difference in the wing shape of birds in Alaska and British Columbia. Differences between sexes and among sites suggest that multiple factors drive patterns of morphological variation in the Black Oystercatcher.  相似文献   

11.
12.

Background and Aims

Phenotypic plasticity, the potential of specific traits of a genotype to respond to different environmental conditions, is an important adaptive mechanism for minimizing potentially adverse effects of environmental fluctuations in space and time. Suaeda maritima shows morphologically different forms on high and low areas of the same salt marsh. Our aims were to examine whether these phenotypic differences occurred as a result of plastic responses to the environment. Soil redox state, indicative of oxygen supply, was examined as a factor causing the observed morphological and physiological differences.

Methods

Reciprocal transplantation of seedlings was carried out between high and low marsh sites on a salt marsh and in simulated tidal-flow tanks in a glasshouse. Plants from the same seed source were grown in aerated or hypoxic solution, and roots were assayed for lactate dehydrogenase (LDH) and alcohol dehydrogenase, and changes in their proteome.

Key Results

Transplanted (away) seedlings and those that remained in their home position developed the morphology characteristic of the home or away site. Shoot Na+, Cl and K+ concentrations were significantly different in plants in the high and low marsh sites, but with no significant difference between home and away plants at each site. High LDH activity in roots of plants grown in aeration and in hypoxia indicated pre-adaptation to fluctuating root aeration and could be a factor in the phenotypic plasticity and growth of S. maritima over the full tidal range of the salt marsh environment. Twenty-six proteins were upregulated under hypoxic conditions.

Conclusions

Plasticity of morphological traits for growth form at extremes of the soil oxygenation spectrum of the tidal salt marsh did not correlate with the lack of physiological plasticity in the constitutively high LDH found in the roots.  相似文献   

13.
    
In 1950, Rensch noted that in clades where males are the larger sex, sexual size dimorphism (SSD) tends to be more pronounced in larger species. This fundamental allometric relationship is now known as ‘Rensch''s rule’. While most researchers attribute Rensch''s rule to sexual selection for male size, experimental evidence is lacking. Here, we suggest that ultimate hypotheses for Rensch''s rule should also apply to groups of individuals and that individual trait plasticity can be used to test those hypotheses experimentally. Specifically, we show that in the sex-changing fish Parapercis cylindrica, larger males have larger harems with larger females, and that SSD increases with harem size. Thus, sexual selection for male body size is the ultimate cause of sexual size allometry. In addition, we experimentally illustrate a positive relationship between polygyny potential and individual growth rate during sex change from female to male. Thus, sexual selection is the ultimate cause of variation in growth rate, and variation in growth rate is the proximate cause of sexual size allometry. Taken together, our results provide compelling evidence in support of the sexual selection hypothesis for Rensch''s rule and highlight the potential importance of individual growth modification in the shaping of morphological patterns in Nature.  相似文献   

14.
Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species'' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way.  相似文献   

15.
There is growing evidence that migratory species are particularly vulnerable to rapid environmental changes arising from human activity. Species are expected to vary in their capacity to respond to these changes: long-distance migrants and those lacking variability in migratory traits are probably at considerable disadvantage. The few studies that have assessed the degree of plasticity in behaviour of marine animals suggest that fidelity to non-breeding destinations is usually high. In the present study, we evaluated individual flexibility in migration strategy of a highly pelagic seabird, the Cory's shearwater Calonectris diomedea. Geolocation data from 72 different migrations, including 14 birds that were tracked for more than one non-breeding season, showed a remarkable capacity to change winter destinations between years. Although some birds exhibited high site fidelity, others shifted from the South to North Atlantic, from the western to eastern South Atlantic, and from the Atlantic to Indian Ocean. Individuals also showed flexibility in stopover behaviour and migratory schedule. Although their K-selected life-history strategy has the disadvantage that the chances of microevolution are slight if circumstances alter rapidly, these results suggest that Cory's shearwaters may be in a better position than many other long-distance migrants to face the consequences of a changing environment.  相似文献   

16.
The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer''s disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.  相似文献   

17.
    
  1. Some small mammals exhibit Dehnel''s Phenomenon, a drastic decrease in body mass, braincase, and brain size from summer to winter, followed by a regrowth in spring. This is accompanied by a re‐organization of the brain and changes in other organs. The evolutionary link between these changes and seasonality remains unclear, although the intensity of change varies between locations as the phenomenon is thought to lead to energy savings during winter.
  2. Here we explored geographic variation of the intensity of Dehnel''s Phenomenon in Sorex araneus. We compiled literature on seasonal changes in braincase size, brain, and body mass, supplemented by our own data from Poland, Germany, and Czech Republic.
  3. We analyzed the effect of geographic and climate variables on the intensity of change and patterns of brain re‐organization.
  4. From summer to winter, the braincase height decreased by 13%, followed by 10% regrowth in spring. For body mass, the changes were −21%/+82%, respectively. Changes increased toward northeast. Several climate variables were correlated with these transformations, confirming a link of the intensity of the changes with environmental conditions. This relationship differed for the decrease versus regrowth, suggesting that they may have evolved under different selective pressures.
  5. We found no geographic trends explaining variability in the brain mass changes although they were similar (−21%/+10%) to those of the braincase size. Underlying patterns of change in brain organization in northeastern Poland were almost identical to the pattern observed in southern Germany. This indicates that local habitat characteristics may play a more important role in determining brain structure than broad scale geographic conditions.
  6. We discuss the techniques and criteria used for studying this phenomenon, as well as its potential presence in other taxa and the importance of distinguishing it from other kinds of seasonal variation.
  相似文献   

18.
19.

Background and Aims

Since the early 1990s, research on genetic variation of phenotypic plasticity has expanded and empirical research has emphasized the role of the environment on the expression of inbreeding depression. An emerging question is how these two evolutionary ecology mechanisms interact in novel environments. Interest in this area has grown with the need to understand the establishment of populations in response to climate change, and to human-assisted transport to novel environments.

Methods

We compare performance in the field of outcrossed (O) and inbred lines (S1, S2) from 20 maternal families from each of two native populations of Mimulus guttatus. The experiment was planted in California in each population''s home site, in the other populations''s home site, in a novel site within the native range of M. guttatus, and in a novel site within the non-native range in North America. The experiment included nearly 6500 individuals. Survival, sexual reproduction and above-ground biomass were examined in order to evaluate inbreeding depression, and stem diameter and plant height were examined in order to evaluate phenotypic plasticity.

Key Results

Across all field sites, approx. 36 % of plants survived to flowering. Inbreeding depression differed among sites and outcrossed offspring generally outperformed selfed offspring. However, in the native-novel site, self-progeny performed better or equally well as outcross progeny. Significant phenotypic plasticity and genetic variation in plasticity was detected in the two architectural traits measured. The absolute value of plasticity showed the most marked difference between home and non-native novel site or non-native-novel site. Evidence was detected for an interaction between inbreeding and plasticity for stem diameter.

Conclusions

The results demonstrate that during initial population establishment, both inbreeding depression and phenotypic plasticity vary among field sites, and may be an important response to environments outside a species'' currently occupied range. However, the interaction between inbreeding and plasticity may be limited and environment-dependent.  相似文献   

20.
Myotonia congenita belongs to the group of non-dystrophic myotonia caused by mutations of CLCN1gene, which encodes human skeletal muscle chloride channel 1. It can be inherited either in autosomal dominant (Thomsen disease) or recessive (Becker disease) forms. Here we have sequenced all 23 exons and exon-intron boundaries of the CLCN1 gene, in a panel of 5 unrelated Chinese patients with myotonia congenita (2 with dominant and 3 with recessive form). In addition, detailed clinical analysis was performed in these patients to summarize their clinical characteristics in relation to their genotypes. Mutational analyses revealed 7 different point mutations. Of these, we have found 3 novel mutations including 2 missense (R47W, V229M), one splicing (IVS19+2T>C), and 4 known mutations (Y261C,G523D, M560T, G859D). Our data expand the spectrum of CLCN1 mutations and provide insights for genotype–phenotype correlations of myotonia congenita in the Chinese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号