首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Sequence variation in mitochondrial DNA (mtDNA) may cause slight differences both in the functioning of the respiratory chain and in free radical production, and an association between certain mtDNA haplogroups and longevity has been suggested. In order to determine further the role of mtDNA in longevity, we studied the frequencies of mtDNA haplogroups and haplogroup clusters among elderly subjects and controls in a Finnish population. Samples were obtained from 225 persons aged 90-91 years (Vitality 90+) and from 400 middle-aged controls and 257 infants. MtDNA haplogroups were determined by restriction fragment length polymorphism. The haplogroup frequencies of the Vitality 90+ group differed from both those of the middle-aged controls ( P=0.01) and the infants ( P=0.00005), haplogroup H being less frequent than among the middle-aged subjects ( P=0.001) and infants ( P=0.00001), whereas haplogroups U and J were more frequent. Haplogroup clusters also differed between Vitality 90+ and both the middle-aged subjects ( P=0.002) and infants ( P=0.00001), the frequency of haplogroup cluster HV being lower in the former and that of UK and WIX being higher. These data suggest an association between certain mtDNA haplogroups or haplogroup clusters and longevity. Furthermore, our data appear to favour the presence of advantageous polymorphisms and support a role for mitochondria and mtDNA in the degenerative processes involved in ageing.  相似文献   

2.
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM. Several polymorphic mtDNA variants are associated with a variety of late-onset degenerative diseases and affect mitochondrial function. We examined the role of private, non-haplogroup associated, mitochondrial variants in the etiology of HCM. In 87 Danish HCM patients, full mtDNA sequencing revealed 446 variants. After elimination of 312 (69.9%) non-coding and synonymous variants, a further 109 (24.4%) with a global prevalence > 0.1%, three (0.7%) haplogroup associated and 19 (2.0%) variants with a low predicted in silico likelihood of pathogenicity, three variants: MT-TC: m.5772G>A, MT-TF: m.644A>G, and MT-CYB: m.15024G>A, p.C93Y remained. A detailed analysis of these variants indicated that none of them are likely to cause HCM. In conclusion, private mtDNA mutations are frequent, but they are rarely, if ever, associated with HCM.  相似文献   

3.

Background

Since mitochondria are the principal source of reactive oxygen species (ROS), these organelles may play an important role in ischemic cardiomyopathy (IC) development. The mitochondrial genome may influence this disease. The aim of the present study was to test the relationship between IC development and the impact of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) defining the mitochondrial haplogroups in a population study.

Methodology and principal findings

Ten major European haplogroups were identified by using the single base extension technique and by polymerase chain reaction-restriction fragment length polymorphism. Frequencies and Odds Ratios for the association between IC patients (n = 358) and healthy controls (n = 423) were calculated. No convincing associations between classical risk factors for ischemic cardiomyopathy development and haplogroups were found. However, compared to healthy controls, the prevalence of haplogroup H was significantly higher in IC patients (40.0% vs 50.0%, p-value  = 0.039) while the frequency of haplogroup J was significantly lower (11.1% vs 5.6%, p-value  = 0.048). The analysis of the SNPs characterizing the European mtDNA haplogroups showed that the m.7028C allele (40.0% vs 50.0%, p-value  = 0.005) and m.14766C allele (43.0% vs 54.2%, p-value  = 0.002) were overrepresented in IC patients, meanwhile the m.10398G allele (19.8% vs 13.1%, p-value  = 0.015) and m.4216C allele (22.2% vs 16.5%, p-value  = 0.044) were found as protective factors against IC.

Conclusions and significance

Our results showed that the haplogroups H and J were found as a risk and protective factors for ischemic cardiomyopathy development, respectively.  相似文献   

4.
Previous studies have hypothesised that mitochondrial DNA (mtDNA) polymorphisms may influence aerobic performance. The matrilineal inheritance and accumulation of polymorphisms in mtDNA means that mtDNA haplogroups, characterised by key polymorphisms, are often represented at different frequencies in different populations. The present study aimed to compare the mtDNA haplogroup distribution of elite Ethiopian athletes relative to the general Ethiopian population. The haplogroup distribution of 76 endurance athletes (E), members of the Ethiopian national athletics team, was compared to 108 members of the general Ethiopian population (C). DNA was extracted from buccal swabs and haplogroups assigned by sequencing part of the hypervariable sequence (HVS-I), followed by analysis of key coding-region polymorphisms. A high proportion of African 'L' haplogroups was found in athletes and controls (C=53%; E=55%). Haplogroup distribution of endurance runners did not differ from that of C (P=0.63). Elite Ethiopian athletes are not a mitochondrially distinct group relative to the Ethiopian population. It appears that environment and, perhaps, polymorphisms in the nuclear genome are more important determinants of Ethiopian running success than mtDNA polymorphisms.  相似文献   

5.
Maliarchuk BA  Derenko MV 《Genetika》2000,36(1):105-108
Nucleotide sequences of the 16126C types of hypervariable segment I from the major noncoding region of human mitochondrial DNA in eastern Slavs from Magadan (N = 19) were analyzed. The mitochondrial DNA sequences were subsumed within three Caucasoid-specific mitochondrial haplogroups, T, J, and JT*. Haplogroup T in eastern Slavs proved to be the most rich in different hypervariable segment I types (nucleotide diversity 1.03%). Haplogroup J was remarkably less heterogeneous (0.28%). Data on the frequency distribution of haplogroup T and J subgroups among eastern Slavs in comparison with some other populations of Eastern Europe are presented.  相似文献   

6.

Background

Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids.

Methodology/Principal Findings

Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress.

Conclusions/Significance

The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.  相似文献   

7.
Zheng S  Wang C  Qian G  Wu G  Guo R  Li Q  Chen Y  Li J  Li H  He B  Chen H  Ji F 《Free radical biology & medicine》2012,53(3):473-481
The interplay of a complex genetic basis with the environmental factors of chronic obstructive pulmonary disease (COPD) may account for the differences in individual susceptibility to COPD. Mitochondrial DNA (mtDNA) contributes to an individual's ability to resist oxidation, an important determinant that affects COPD susceptibility. To investigate whether mtDNA haplogroups play important roles in COPD susceptibility, the frequencies of mtDNA haplogroups and an 822-bp mtDNA deletion in 671 COPD patients and 724 control individuals from southwestern China were compared. Multivariate logistic regression analysis revealed that, whereas mtDNA haplogroups A and M7 might be associated with an increased risk for COPD (OR=1.996, 95% CI=1.149-2.831, p=0.006, and OR=1.754, 95% CI=1.931-2.552, p=0.021, respectively), haplogroups F, D, and M9 might be associated with a decreased risk for COPD in this population (OR=0.554, 95% CI=0.390-0.787, p=0.001; OR=0.758, 95% CI=0.407-0.965, p=0.002; and OR=0.186, 95% CI=0.039-0.881, p=0.034, respectively). Additionally, the increased frequency of the 822-bp mtDNA deletion in male cigarette-smoking subjects among COPD patients and controls of haplogroup D indicated that haplogroup D might increase an individual's susceptibility to DNA damage from external reactive oxygen species derived from heavy cigarette smoking. We conclude that haplogroups A and M7 might be risk factors for COPD, whereas haplogroups D, F, and M9 might decrease the COPD risk in this Han Chinese population.  相似文献   

8.
Mitochondrial function is absolutely necessary to supply the energy required for muscles, and germ line mutations in mitochondrial genes have been related with impaired cardiac function and exercise intolerance. In addition, alleles at several polymorphic sites in mtDNA define nine common haplogroups, and some of these haplogroups have been implicated in the risk of developing several diseases. In this study, we analysed the association between mtHaplogroups and the capacity to reach the status of elite endurance athlete. DNA was obtained from blood leukocytes of 95 Spanish elite endurance athletes and 250 healthy male population controls. We analysed eight mitochondrial polymorphisms and the frequencies were statistically compared between elite athletes and controls. Haplogroup T, specifically defined by 13368A, was significantly less frequent among elite endurance athletes (p =0.012, Fisher's exact test). Our study suggests that allele 13368A and mitochondrial haplogroup T might be a marker negatively associated with the status of elite endurance athlete. This mitochondrial variant could be related with a lower capacity to respond to endurance training, through unknown mechanisms involving a less efficient mitochondrial workload.  相似文献   

9.
《BBA》2014,1837(2):226-231
It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present.  相似文献   

10.

Background

Onset and development of the multifactorial disease age-related macular degeneration (AMD) are highly interrelated with mitochondrial functions such as energy production and free radical turnover. Mitochondrial dysfunction and overproduction of reactive oxygen species may contribute to destruction of the retinal pigment epithelium, retinal atrophy and choroidal neovascularization, leading to AMD. Consequently, polymorphisms of the mitochondrial genome (mtDNA) are postulated to be susceptibility factors for this disease. Previous studies from Australia and the United States detected associations of mitochondrial haplogroups with AMD. The aim of the present study was to test these associations in Middle European Caucasians.

Methodology/Principal Findings

Mitochondrial haplogroups (combinations of mtDNA polymorphisms) and mitochondrial CR polymorphisms were analyzed in 200 patients with wet AMD (choroidal neovascularization, CNV), in 66 patients with dry AMD, and in 385 controls from Austria by means of multiplex primer extension analysis and sequencing, respectively. In patients with CNV, haplogroup H was found to be significantly less frequent compared to controls, and haplogroup J showed a trend toward a higher frequency compared to controls. Five CR polymorphisms were found to differ significantly in the two study populations compared to controls, and all, except one (T152C), are linked to those haplogroups.

Conclusions/Significance

It can be concluded that haplogroup J is a risk factor for AMD, whereas haplogroup H seems to be protective for AMD.  相似文献   

11.
Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are associated with an increased risk. To examine functional consequences of these haplogroups without being confounded by the heterogeneous nuclear genomic backgrounds of different subjects, we constructed transmitochondrial cytoplasmic hybrid (cybrid) cells harboring each of the three haplogroups (N9a, D5, and F) in a background of a shared nuclear genome. We compared the functional consequences of the three haplogroups using cell-based assays and gene expression microarrays. Cell-based assays did not detect differences in mitochondrial functions among the haplogroups in terms of ATP generation, reactive oxygen species production, mitochondrial membrane potential, and cellular dehydrogenase activity. However, differential expression and clustering analyses of microarray data revealed that the three haplogroups exhibit a distinctive nuclear gene expression pattern that correlates with their susceptibility to T2DM. Pathway analysis of microarray data identified several differentially regulated metabolic pathways. Notably, compared to the T2DM-resistant haplogroup N9a, the T2DM-susceptible haplogroup F showed down-regulation of oxidative phosphorylation and up-regulation of glycolysis. These results suggest that variations in mtDNA can affect the expression of nuclear genes regulating mitochondrial functions or cellular energetics. Given that impaired mitochondrial function caused by T2DM-associated mtDNA haplogroups is compensated by the nuclear genome, we speculate that defective nuclear compensation, under certain circumstances, might lead to the development of T2DM.  相似文献   

12.
Leber's hereditary optic neuropathy is a maternally inherited optic atrophy caused by mitochondrial DNA point mutations. Previous epidemiological studies have shown that individuals from mitochondrial genetic backgrounds (haplogroups) J/Uk and H have a higher and a lower risk, respectively, of suffering this disorder. To analyze the bases of these associations at cellular and molecular levels, functional studies with cybrids provide high quality evidence. Cybrids from haplogroup J contain less mitochondrial deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and synthesize a smaller amount of mitochondrial DNA-encoded polypeptides than those from haplogroup H. Haplogroup J cybrids also display lower oxygen consumption, mitochondrial inner membrane potential and total adenosine-5'-triphosphate (ATP) levels. Moreover, mitochondrial DNA levels correlate with many parameters of the oxidative phosphorylation system. These results suggest that the mitochondrial DNA amount determines oxidative phosphorylation capacity and, along with other recently published observations, support the possibility that mitochondrial DNA levels may be responsible for the bias of the disorder toward males, for the incomplete penetrance of mutations causing Leber's hereditary optic neuropathy and for the association of the disease with particular mitochondrial DNA haplogroups.  相似文献   

13.
The possibility that some combinations of mtDNA polymorphisms, previously associated with Leber's hereditary optic neuropathy (LHON), may affect mitochondrial respiratory function was tested in osteosarcoma-derived transmitochondrial cytoplasmic hybrids (cybrids). In this cellular system, in the presence of the same nuclear background, different exogenous mtDNAs are used to repopulate a parental cell line previously devoid of its original mtDNA. No detectable differences in multiple parameters exploring respiratory function were observed when mtDNAs belonging to European haplogroups X, H, T and J were used. Different possible explanations for the previously established association between haplogroup J and LHON 11778/ND4 and 14484/ND6 pathogenic mutations are discussed, including the unconventional proposal that mtDNA haplogroup J may exert a protective rather than detrimental effect.  相似文献   

14.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

15.
Mitochondrial DNA (mtDNA) polymorphisms were analyzed by polymerase chain reaction amplification and haplogroup-specific restriction screening in populations from Corsica and Sardinia. These included 56 individuals from the area of Corte, central Corsica (France), 51 individuals from Gallura, northern Sardinia (Italy), and 45 individuals from Barbagia, central Sardinia. The screening revealed that about 95% of mtDNAs could be grouped in 8 of the 9 European haplogroups, including H-K, T-V, and X. Our results confirmed that these haplogroups encompass virtually all the mitochondrial lineages present in Europe and can be detected in both northern and southern European populations. We also discovered 2 restriction sites (-73 Alw441 and +75 SphI) that allow the detection of informative nucleotide changes in the second hypervariable segment of the control region, which help to detect the haplogroup identity of mtDNAs without requiring further DNA sequencing. Haplogroup H was the most common mtDNA lineage in this sample, reaching frequencies from about 40% in Corsican and Gallurese populations, to about 65% in the Barbagian population. Haplogroup V, possibly originating in the Iberian peninsula, was found only in the central Sardinian sample. Of the 5 Corsican mtDNAs belonging to the haplogroup T, 4 had a restriction fragment length polymorphism found only in this population. It seems that this mutation originated in Corsica and has had time to spread in the area, since the maternal grandmothers of the subjects came from different villages of the island. The sample from central Sardinia shows a remarkable discontinuity with those from the northern part of the island and from Corsica. Gallura and Corsica seem to have undergone a more recent peopling event, possibly related to the arrival of new mitochondrial variability from continental Italy, while Barbagia has apparently maintained more archaic haplotypes.  相似文献   

16.
Archeological evidence suggests that the iconographic and technological developments that took place in the highlands around Lake Titicaca in the Central Andean region had an influence on the cultural elaborations of the human groups in the valleys and the Pacific coast of northern Chile. In a previous communication, we were able to show, by means of a distance analysis, that a craniofacial differentiation accompanied the process of cultural evolution in the valleys (Rothhammer and Santoro [2001] Lat. Am. Antiq. 12:59-66). Recently, numerous South Amerindian mtDNA studies were published, and more accurate molecular techniques to study ancient mtDNA are available. In view of these recent developments, we decided 1) to study chronological changes of ancient mtDNA haplogroup frequencies in the nearby Lluta, Azapa, and Camarones Valleys, 2) to identify microevolutionary forces responsible for such changes, and 3) to compare ancient mtDNA haplogroup frequencies with previous data in order to validate craniometrical results and to reconstruct the biological history of the prehistoric valley groups in the context of their interaction with culturally more developed highland populations. From a total of 97 samples from 83 individuals, 68 samples (61 individuals) yielded amplifications for the fragments that harbor classical mtDNA markers. The haplogroup distribution among the total sample was as follows: 26.2%, haplogroup A; 34.4%, haplogroup B; 14.8%, haplogroup C; 3.3%, haplogroup D; and 21.3%, other haplogroups. Haplogroup B tended to increase, and haplogroup A to decrease during a 3,900-year time interval. The sequence data are congruent with the haplogroup analysis. In fact, the sequencing of hypervariable region I of 30 prehistoric individuals revealed 43 polymorphic sites. Sequence alignment and subsequent phylogenetic tree construction showed two major clusters associated with the most common restriction haplogroups. Individuals belonging to haplogroups C and D tended to cluster together with nonclassical lineages.  相似文献   

17.
1. Alzheimer’s disease (AD) is the most common form of dementia in the elderly in which interplay between genes and the environment is supposed to be involved. Mitochondrial DNA (mtDNA) has the only noncoding regions at the displacement loop (D-loop) region that contains two hypervariable segments (HVS-I and HVS-II) with high polymorphism. mtDNA has already been fully sequenced and many subsequent publications have shown polymorphic sites, haplogroups, and haplotypes. Haplogroups could have important implications to understand the association between mutability of the mitochondrial genome and the disease. 2. To assess the relationship between mtDNA haplogroup and AD, we sequenced the mtDNA HVS-I in 30 AD patients and 100 control subjects. We could find that haplogroups H and U are significantly more abundant in AD patients (P = 0.016 for haplogroup H and P = 0.0003 for haplogroup U), Thus, these two haplogroups might act synergistically to increase the penetrance of AD disease.  相似文献   

18.
Mitochondrial DNA (mtDNA) polymorphism was examined in three Russian populations from the European part of Russia (Stavropol krai, Orel oblast, and Saratov oblast). This analysis showed that mitochondrial gene pool of Russians was represented by the mtDNA types belonging to haplogroups H, V, HV*, J, T, U, K, I, W, and X. A mongoloid admixture (1.5%) was revealed in the form of mtDNA types of macrohaplogroup M. Comparative analysis of the mtDNA haplogroup frequency distribution patterns in six Russian populations from the European part of Russia indicated the absence of substantial genetic differences between them. However, in Russian populations from the southern and central regions the frequency of haplogroup V (average frequency 8%) was higher than in the populations from more northern regions. Based on the data on mtDNA HVS1 sequence variation, it was shown that the diversity of haplogroup V in Russians (h = 0.72) corresponded to the highest h values observed in Europe. The reasons for genetic differentiation of the Russian population (historical, ecological, and adaptive) are discussed.  相似文献   

19.
Li FX  Ji FY  Zheng SZ  Yao W  Xiao ZL  Qian GS 《Mitochondrion》2011,11(4):553-558
We conducted a case-control study to investigate the association of mitochondrial DNA (mtDNA) haplogroups with acute mountain sickness (AMS) in Han Chinese from southwestern (SW) China. Pearson's chi-square test or Fisher's exact test revealed significant reduction of mtDNA haplogroups D and M9, while a significant increase of haplogroup M7 in AMS subjects compared with non-AMS subjects. The multivariate logistic regression analysis after adjustment for body mass index (BMI), a risk factor of AMS in the present study, showed that both D and M9 were associated with significantly decreased risk of AMS, while M7 was associated with a significantly increased risk of AMS (OR=0.605, p=0.000; OR=0.037, p=0.001, and OR=2.419, p=0.001, respectively). In addition, further analysis stratified by the AMS severities indicated that haplogroup B was correlated with a 2.41-folds increased risk of developing severe AMS (95%C.I=1.288-4.514, p=0.006). Our findings provide evidence that, in SW Han Chinese, mtDNA haplogroups D and M9 are related to individual tolerance to AMS, while haplogroups M7 and B are risk factors for AMS.  相似文献   

20.
As multiple sclerosis (MS) has long been known to be associated with Leber, hereditary optic neuropathy (LHON), a disease caused by mitochondrial (mtDNA) mutations, in this study we assessed possible involvement of mtDNA point mutation in MS patients. Fifty-two MS patients whose disease was confirmed with revised McDonald criteria and referred to Iranian Center of Neurological Research of Imam Khomeini hospital during 2006–2007 entered the study. Secondary mtDNA mutations, age, gender, clinical disability according to expanded disability status scale (EDSS), course of the disease, and presenting symptoms were the variables investigated in this study. DNA purification was performed by Diatom DNA Extraction Kit. Analysis of data was done by SPSS V11.5. The prevalent mutations with frequency of 19.2% were J, L, and T haplogroups. Haplotype A was more prevalent in patients with younger age of onset (P-value = 0.012) and high proportion of haplogroup H was associated with optic nerve involvement (P-value = 0.015). No motor symptoms were seen in haplogroup H patients. There is no significant relationship between duration of the disease and EDSS in different mutation of mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号