首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Macrophages are key players in many aspects of human physiology and disease. It has been hypothesized that in a given microenvironment monocytes differentiate into specific subpopulations with distinct functions. In order to study the role of macrophage heterogeneity in atherogenesis, we established a novel isolation and culture technique for human monocyte-derived macrophages. The present technique does not select for monocyte subpopulations prior to the onset of differentiation. Monocytes were cultured for 2 weeks in the presence of autologous lymphocytes before being plated quantitatively. They differentiated into mature macrophages in terms of morphology, lipid composition, and biological activity. Based on phagocytic activity as well as on the expression of CD14, CD36, and the low-density lipoprotein (LDL) receptor, we have identified macrophage subpopulations that may play distinct roles in atherogenesis. While virtually all adherence-purified monocytes expressed CD14, CD36, and the LDL-R, we characterized three subpopulations of macrophages based on the expression of these antigens: CD36+CD14LDL-R (58±12%), CD36+CD14+LDL-R+(18±5%), the remaining cells being CD36CD14LDL-R. The first two subsets decreased in size during further differentiation (51±12% and 8±3%, respectively). Our culture technique may also serve as a good model for studying the implications of macrophage heterogeneity in diseases other than atherosclerosis. Accepted: 13 February 1998  相似文献   

2.
3.
Tissue macrophages are derived exclusively from blood monocytes, which as monocyte-derived macrophages support HIV-1 replication. However, among human tissue macrophages only intestinal macrophages are non-permissive to HIV-1, suggesting that the unique microenvironment in human intestinal mucosa renders lamina propria macrophages non-permissive to HIV-1. We investigated this hypothesis using blood monocytes and intestinal extracellular matrix (stroma)-conditioned media (S-CM) to model the exposure of newly recruited monocytes and resident macrophages to lamina propria stroma, where the cells take up residence in the intestinal mucosa. Exposure of monocytes to S-CM blocked up-regulation of CD4 and CCR5 expression during monocyte differentiation into macrophages and inhibited productive HIV-1 infection in differentiated macrophages. Importantly, exposure of monocyte-derived macrophages simultaneously to S-CM and HIV-1 also inhibited viral replication, and sorted CD4+ intestinal macrophages, a proportion of which expressed CCR5+, did not support HIV-1 replication, indicating that the non-permissiveness to HIV-1 was not due to reduced receptor expression alone. Consistent with this conclusion, S-CM also potently inhibited replication of HIV-1 pseudotyped with vesicular stomatitis virus glycoprotein, which provides CD4/CCR5-independent entry. Neutralization of TGF-β in S-CM and recombinant TGF-β studies showed that stromal TGF-β inhibited macrophage nuclear translocation of NF-κB and HIV-1 replication. Thus, the profound inability of intestinal macrophages to support productive HIV-1 infection is likely the consequence of microenvironmental down-regulation of macrophage HIV-1 receptor/coreceptor expression and NF-κB activation.  相似文献   

4.
Niacin is a broad-spectrum lipid-regulating drug used for clinical therapy of chronic high-grade inflammatory diseases. However, the mechanisms by which either niacin or the byproducts of its catabolism ameliorate these inflammatory diseases are not clear yet. Human circulating monocytes and mature macrophages were used to analyze the effects of niacin and its metabolites (NAM, NUA and 2-Pyr) on oxidative stress, plasticity and inflammatory response by using biochemical, flow cytometry, quantitative real-time PCR and Western blot technologies. Niacin, NAM and 2-Pyr significantly decreased ROS, NO and NOS2 expression in LPS-treated human mature macrophages. Niacin and NAM skewed macrophage polarization toward antiinflammatory M2 macrophage whereas a trend toward proinflammatory M1 macrophage was noted following treatment with NUA. Niacin and NAM also reduced the inflammatory competence of LPS-treated human mature macrophages and promoted bias toward antiinflammatory CD14+CD16++ nonclassical human primary monocytes. This study reveals for the first time that niacin and its metabolites possess antioxidant, reprogramming and antiinflammatory properties on human primary monocytes and monocyte-derived macrophages. Our findings imply a new understanding of the mechanisms by which niacin and its metabolites favor a continuous and gradual plasticity process in the human monocyte/macrophage system.  相似文献   

5.
The stage of differentiation and the lineage of CD4+ cells profoundly affect their susceptibility to infection by human immunodeficiency virus type 1 (HIV-1). While CD4+ T lymphocytes in patients are readily susceptible to HIV-1 infection, peripheral blood monocytes are relatively resistant during acute or early infection, even though monocytes also express CD4 and viral strains with macrophage (M)-tropic phenotypes predominate. CCR5, the main coreceptor for M-tropic viruses, clearly contributes to the ability of CD4+ T cells to be infected. To determine whether low levels of CCR5 expression account for the block in infection of monocytes, we examined primary monocyte lineage cells during differentiation. Culturing of blood monocytes for 5 days led to an increase in the mean number of CCR5-positive cells from <20% of monocytes to >80% of monocyte-derived macrophages (MDM). Levels of CCR5 expression per monocyte were generally lower than those on MDM, perhaps below a minimum threshold level necessary for efficient infection. Productive infection may be restricted to the small subset of monocytes that express relatively high levels of CCR5. Steady-state CCR5 mRNA levels also increased four- to fivefold during MDM differentiation. Infection of MDM by M-tropic HIV-1JRFL resulted in >10-fold-higher levels of p24, and MDM harbored >30-fold more HIV-1 DNA copies than monocytes. In the presence of the CCR5-specific monoclonal antibody (MAb) 2D7, virus production and cellular levels of HIV-1 DNA were decreased by >80% in MDM, indicating a block in viral entry. There was a direct association between levels of CCR5 and differentiation of monocytes to macrophages. Levels of CCR5 were related to monocyte resistance and macrophage susceptibility to infection because infection by the M-tropic strain HIV-1JRFL could be blocked by MAb 2D7. These results provide direct evidence that CCR5 functions as a coreceptor for HIV-1 infection of primary macrophages.  相似文献   

6.
The level of microbial translocation from the intestine is increased in HIV-1 infection. Proinflammatory cytokine production by peripheral antigen-presenting cells in response to translocated microbes or microbial products may contribute to systemic immune activation, a hallmark of HIV-1 infection. We investigated the cytokine responses of peripheral blood myeloid dendritic cells (mDCs) and monocytes to in vitro stimulation with commensal enteric Escherichia coli in peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected subjects and from uninfected controls. Levels of interleukin 23 (IL-23) produced by PBMC from HIV-1-infected subjects in response to E. coli stimulation were significantly higher than those produced by PBMC from uninfected subjects. IL-23 was produced primarily by CD16+ monocytes. This subset of monocytes was increased in frequency and expressed higher levels of Toll-like receptor 4 (TLR4) in HIV-1-infected individuals than in controls. Blocking TLR4 on total CD14+ monocytes reduced IL-23 production in response to E. coli stimulation. Levels of soluble CD27, an indicator of systemic immune activation, were elevated in HIV-1-infected subjects and were associated with the percentage of CD16+ monocytes and the induction of IL-23 by E. coli, providing a link between these parameters and systemic inflammation. Taken together, these results suggest that IL-23 produced by CD16+ monocytes in response to microbial stimulation may contribute to systemic immune activation in HIV-1-infected individuals.  相似文献   

7.
Mammalian tissues contain networks of mononuclear phagocytes (MPh) that sense injury and orchestrate the response to it. In mice, this is affected by distinct populations of dendritic cells (DC), monocytes and macrophages and recent studies suggest the same is true for human skin and intestine but little is known about the kidney. Here we describe the analysis of MPh populations in five human kidneys and show they are highly heterogeneous and contain discrete populations of DC, monocytes and macrophages. These include: plasmacytoid DC (CD303+) and both types of conventional DC—cDC1 (CD141+ cells) and CD2 (CD1c+ cells); classical, non-classical and intermediate monocytes; and macrophages including a novel population of CD141+ macrophages clearly distinguishable from cDC1 cells. The relative size of the MPh populations differed between kidneys: the pDC population was bi-modally distributed being less than 2% of DC in two kidneys without severe injury and over 35% in the remaining three with low grade injury in the absence of morphological evidence of inflammation. There were profound differences in the other MPh populations in kidneys with high and low numbers of pDC. Thus, cDC1 cells were abundant (55 and 52.3%) when pDC were sparse and sparse (12.8–12.5%) when pDC were abundant, whereas the proportions of cDC2 cells and classical monocytes increased slightly in pDC high kidneys. We conclude that MPh are highly heterogeneous in human kidneys and that pDC infiltration indicative of low-grade injury does not occur in isolation but is part of a co-ordinated response affecting all renal DC, monocyte and macrophage populations.  相似文献   

8.
The derivation of human macrophages from peripheral blood monocytes remains a convenient method for the study of macrophage biology. However, for macrophage differentiation, a significant proportion of development has occurred prior to the monocyte stage; monocyte subsets also have varying potential for differentiation. Differentiation of macrophages from a less mature precursor, such as CD34+ haematopoietic stem cells, can further inform with regard to the development of macrophage-lineage cells. CD34+ cells were cultured in serum-free medium containing Flt3L, SCF, IL-3, IL-6 and M-CSF. Using differing combinations of growth factors, the effect on cell proliferation and differentiation to adherent macrophage-like cells was determined. The proliferative response of CD34+ cells to M-CSF was determined during the initial phase of cell culture. Thirteen combinations of SCF, IL-3, IL-6 and M-CSF were then compared to determine the optimum combination for proliferation. Adherence was used to isolate mature macrophages, and the macrophage-like phenotype was confirmed by analyses of surface markers, histo-morphology and phagocytosis. This study refines the means by which large numbers of macrophages are obtained under serum-free conditions from haematopoietic precursors.  相似文献   

9.
10.
Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm) infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ) stained positive for CD206 and M-CSF-derived macrophages (M-Mφ) for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most suitable model to study Lm infection of macrophages.  相似文献   

11.
Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206+, CD301+, CD11cCD206+ (M2) and CD11c+CD206+ (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.  相似文献   

12.
13.
Alternatively activated macrophages (AAM) that accumulate during chronic T helper 2 inflammatory conditions may arise through proliferation of resident macrophages or recruitment of monocyte-derived cells. Liver granulomas that form around eggs of the helminth parasite Schistosoma mansoni require AAM to limit tissue damage. Here, we characterized monocyte and macrophage dynamics in the livers of infected CX3CR1GFP/+ mice. CX3CR1-GFP+ monocytes and macrophages accumulated around eggs and in granulomas during infection and upregulated PD-L2 expression, indicating differentiation into AAM. Intravital imaging of CX3CR1-GFP+ Ly6Clow monocytes revealed alterations in patrolling behavior including arrest around eggs that were not encased in granulomas. Differential labeling of CX3CR1-GFP+ cells in the blood and the tissue showed CD4+ T cell dependent accumulation of PD-L2+ CX3CR1-GFP+ AAM in the tissues as granulomas form. By adoptive transfer of Ly6Chigh and Ly6Clow monocytes into infected mice, we found that AAM originate primarily from transferred Ly6Chigh monocytes, but that these cells may transition through a Ly6Clow state and adopt patrolling behavior in the vasculature. Thus, during chronic helminth infection AAM can arise from recruited Ly6Chigh monocytes via help from CD4+ T cells.  相似文献   

14.
CD4+ T cells rather than macrophages are the principal cells infected by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) in vivo. Macrophage tropism has been linked to the ability to enter cells through CCR5 in conjunction with limiting CD4 levels, which are much lower on macrophages than on T cells. We recently reported that rhesus macaques (RM) experimentally depleted of CD4+ T cells before SIV infection exhibit extensive macrophage infection as well as high chronic viral loads and rapid progression to AIDS. Here we show that early-time-point and control Envs were strictly CD4 dependent but that, by day 42 postinfection, plasma virus of CD4+ T cell-depleted RM was dominated by Envs that mediate efficient infection using RM CCR5 independently of CD4. Early-time-point and control RM Envs were resistant to neutralization by SIV-positive (SIV+) plasma but became sensitive if preincubated with sCD4. In contrast, CD4-independent Envs were highly sensitive to SIV+ plasma neutralization. However, plasma from SIV-infected CD4+ T cell-depleted animals lacked this CD4-inducible neutralizing activity and failed to neutralize any Envs regardless of sCD4 pre-exposure status. Enhanced sensitivity of CD4-independent Envs from day 42 CD4+ T cell-depleted RM was also seen with monoclonal antibodies that target both known CD4-inducible and other Env epitopes. CD4 independence and neutralization sensitivity were both conferred by Env amino acid changes E84K and D470N that arose independently in multiple animals, with the latter introducing a potential N-linked glycosylation site within a predicted CD4-binding pocket of gp120. Thus, the absence of CD4 T cells results in failure to produce antibodies that neutralize CD4-independent Envs and CD4-pretriggered control Envs. In the absence of this constraint and with a relative paucity of CD4+ target cells, widespread macrophage infection occurs in vivo accompanied by emergence of variants carrying structural changes that enable entry independently of CD4.  相似文献   

15.
Models of macrophage subtypes require molecular characterization to reliably facilitate their differentiation. Although CD16+ (Fc-gamma III receptor) monocytes that express CD163 (a hemoglobin/haptoglobin receptor) have been implicated in a variety of disease states, the conditions necessary to establish lineages of these cell subtypes remains unknown. The current investigations utilize a cell line derived from acute myelogenous leukemia lineage, MonoMac-1, to interrogate the factors that promote the development of CD16+ macrophages that express CD163. Results implicate the glucocorticoid pathway as well as c-fms signaling based on the action of dexamethasone and macrophage colony-stimulating factor-1 in promoting CD16+ expression, in addition to phorbol myristate acetate and lipopolysaccharides treatment. The ability of glucocorticoid and c-fms receptor antagonists to inhibit CD16+ cell formation further establishes the role of these pathways in CD16 expression in this cell line. In view of the inherent difficulty in working with primary cells as well as donor variation, cell lines may be preferable to primary cells for their consistency. We envision that the process we use to induce CD16 expression in this cell type will be useful for screening and identification of drug candidates potentially useful for the treatment of diseases where the etiology involves the expansion of the CD16+ monocytes subset or the accumulation of CD163+ tissue macrophages.  相似文献   

16.
Increased bone resorption mediated by osteoclasts causes various diseases such as osteoporosis and bone erosion in rheumatoid arthritis (RA). Osteoclasts are derived from the monocyte/macrophage lineage, but the precise origin remains unclear. In the present study, we show that the purified CD16- human peripheral blood monocyte subset, but not the CD16+ monocyte subset, differentiates into osteoclast by stimulation with receptor activator of NF-κB ligand (RANKL) in combination with macrophage colony-stimulating factor (M-CSF). Integrin-β3 mRNA and the integrin-αvβ3 heterodimer were only expressed on CD16- monocytes, when they were stimulated with RANKL + M-CSF. Downregulation of β3-subunit expression by small interfering RNA targeting β3 abrogated osteoclastogenesis from the CD16- monocyte subset. In contrast, the CD16+ monocyte subset expressed larger amounts of tumor necrosis factor alpha and IL-6 than the CD16- subset, which was further enhanced by RANKL stimulation. Examination of RA synovial tissue showed accumulation of both CD16+ and CD16- macrophages. Our results suggest that peripheral blood monocytes consist of two functionally heterogeneous subsets with distinct responses to RANKL. Osteoclasts seem to originate from CD16- monocytes, and integrin β3 is necessary for osteoclastogenesis. Blockade of accumulation and activation of CD16- monocytes could therefore be a beneficial approach as an anti-bone resorptive therapy, especially for RA.  相似文献   

17.
HIV-1 proviral DNA integration into host chromosomal DNA is only partially completed by the viral integrase, leaving two single-stranded DNA gaps with 5′-end mismatched viral DNA flaps. It has been inferred that these gaps are repaired by the cellular DNA repair machinery. Here, we investigated the efficiency of gap repair at integration sites in different HIV-1 target cell types. First, we found that the general gap repair machinery in macrophages was attenuated compared with that in dividing CD4+ T cells. In fact, the repair in macrophages was heavily reliant upon host DNA polymerase β (Pol β). Second, we tested whether the poor dNTP availability found in macrophages is responsible for the delayed HIV-1 proviral DNA integration in this cell type because the Km value of Pol β is much higher than the dNTP concentrations found in macrophages. Indeed, with the use of a modified quantitative AluI PCR assay, we demonstrated that the elevation of cellular dNTP concentrations accelerated DNA gap repair in macrophages at HIV-1 proviral DNA integration sites. Finally, we found that human monocytes, which are resistant to HIV-1 infection, exhibited severely restricted gap repair capacity due not only to the very low levels of dNTPs detected but also to the significantly reduced expression of Pol β. Taken together, these results suggest that the low dNTP concentrations found in macrophages and monocytes can restrict the repair steps necessary for HIV-1 integration.  相似文献   

18.

Objective

The uremic toxin Indoxyl-3-sulphate (IS), a ligand of Aryl hydrocarbon Receptor (AhR), raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs) have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD) than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation.

Methods

Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed.

Results

IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2) and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1), via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression.

Conclusion

IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.  相似文献   

19.
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c+/Sca-1+ adventitial progenitor cells. Analysis of the NCX−/− mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34+ progenitor cells within the adventitial vasculogenic zone to differentiate into CD31+ endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.Subject terms: Stem-cell differentiation, Stem-cell niche, Adult stem cells, Cell signalling  相似文献   

20.
《Cytotherapy》2019,21(10):1049-1063
Human CD141+ dendritic cells (DCs), specialized for cross-presentation, have been extensively studied in the development of DC-based therapy against cancer. A series of attempts was made to generate CD141+ DCs from cord blood CD34+ hematopoietic progenitors to overcome the practical limitation of in vivo rareness. In the present study, we identified a culture system that generates high CD141+ DCs. After culture of CD14+ monocytes in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 for 8 days, CD141 was detected on cells that adhered to the bottom of the culture plate. The attached cells exhibited typical features of immature monocyte-derived DCs (moDCs), except for higher CD86 expression, more dendrites and higher granularity compared with those that did not attach. With 3 additional days of culture, increased CD141 expression on the cells was retained along with adhesion ability and partial expression of CLEC9A, a c-type lectin receptor. Furthermore, the cells exhibited effective uptake of dead cells. Interestingly, the attached moDCs differently responded to polyinosinic:polycytidylic acid (poly I:C) stimulation as well as a mixed lymphocyte reaction. Collectively, our findings show that human CD141+ DCs can be sufficiently generated from peripheral blood CD14+ monocytes, potentiating further investigation into generation of higher yields of cross-priming human DCs in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号