首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gonads arise on the ventromedial surface of each mesonephros. In most birds, female gonadal development is unusual in that only the left ovary becomes functional, whereas that on the right degenerates during embryogenesis. Males develop a pair of equally functional testes. We show that the chick gonads already have distinct morphological and molecular left-right (L-R) characteristics in both sexes at indifferent (genital ridge) stages and that these persist, becoming more elaborate during sex determination and differentiation, but have no consequences for testis differentiation. We find that these L-R differences depend on the L-R asymmetry pathway that controls the situs of organs such as the heart and gut. Moreover, a key determinant of this, Pitx2, is expressed asymmetrically, such that it is found only in the left gonad in both sexes from the start of their development. Misexpression of Pitx2 on the right side before and during gonadogenesis is sufficient to transform the right gonad into a left-like gonad. In ZW embryos, this transformation rescues the degenerative fate of the right ovary, allowing for the differentiation of left-like cortex containing meiotic germ cells. There is therefore a mechanism in females that actively promotes the underlying L-R asymmetry initiated by Pitx2 and the degeneration of the right gonad, and a mechanism in males that allows it to be ignored or overridden.  相似文献   

2.
Estrogens play a key role in sexual differentiation of both the gonads and external traits in birds. The production of estrogen occurs via a well-characterised steroidogenic pathway, which is a multi-step process involving several enzymes, including cytochrome P450 aromatase. In chicken embryos, the aromatase gene (CYP19A1) is expressed female-specifically from the time of gonadal sex differentiation. To further explore the role of aromatase in sex determination, we ectopically delivered this enzyme using the retroviral vector RCASBP in ovo. Aromatase overexpression in male chicken embryos induced gonadal sex-reversal characterised by an enlargement of the left gonad and development of ovarian structures such as a thickened outer cortex and medulla with lacunae. In addition, the expression of key male gonad developmental genes (DMRT1, SOX9 and Anti-Müllerian hormone (AMH)) was suppressed, and the distribution of germ cells in sex-reversed males followed the female pattern. The detection of SCP3 protein in late stage sex-reversed male embryonic gonads indicated that these genetically male germ cells had entered meiosis, a process that normally only occurs in female embryonic germ cells. This work shows for the first time that the addition of aromatase into a developing male embryo is sufficient to direct ovarian development, suggesting that male gonads have the complete capacity to develop as ovaries if provided with aromatase.  相似文献   

3.
In most animals, the gonads develop symmetrically, but most birds develop only a left ovary. A possible role for estrogen in this asymmetric ovarian development has been proposed in the chick, but the mechanism underlying this process is largely unknown. Here, we identify the molecular mechanism responsible for this ovarian asymmetry. Asymmetric PITX2 expression in the left presumptive gonad leads to the asymmetric expression of the retinoic-acid (RA)-synthesizing enzyme, RALDH2, in the right presumptive gonad. Subsequently, RA suppresses expression of the nuclear receptors Ad4BP/SF-1 and estrogen receptor alpha in the right ovarian primordium. Ad4BP/SF-1 expressed in the left ovarian primordium asymmetrically upregulates cyclin D1 to stimulate cell proliferation. These data suggest that early asymmetric expression of PITX2 leads to asymmetric ovarian development through up- or downregulation of RALDH2, Ad4BP/SF-1, estrogen receptor alpha and cyclin D1.  相似文献   

4.
5.
Sexual dimorphism requires the integration of positional information in the embryo with the sex determination pathway. Homeotic genes are a major source of positional information responsible for patterning along the anterior-posterior axis in embryonic development, and are likely to play a critical role in sexual dimorphism. Here, we investigate the role of homeotic genes in the sexually dimorphic development of the gonad in Drosophila. We have found that Abdominal-B (ABD-B) is expressed in a sexually dimorphic manner in the embryonic gonad. Furthermore, Abd-B is necessary and sufficient for specification of a sexually dimorphic cell type, the male-specific somatic gonadal precursors (msSGPs). In Abd-B mutants, the msSGPs are not specified and male gonads now resemble female gonads with respect to these cells. Ectopic expression of Abd-B is sufficient to induce formation of extra msSGPs in additional segments of the embryo. Abd-B works together with abdominal-A to pattern the non-sexually dimorphic somatic gonad in both sexes, while Abd-B alone specifies the msSGPs. Our results indicate that Abd-B acts at multiple levels to regulate gonad development and that Abd-B class homeotic genes are conserved factors in establishing gonad sexual dimorphism in diverse species.  相似文献   

6.
7.

Background

X-linked alpha thalassemia, mental retardation syndrome in humans is a rare recessive disorder caused by mutations in the ATRX gene. The disease is characterised by severe mental retardation, mild alpha-thalassemia, microcephaly, short stature, facial, skeletal, genital and gonadal abnormalities.

Results

We examined the expression of ATRX and ATRY during early development and gonadogenesis in two distantly related mammals: the tammar wallaby (a marsupial) and the mouse (a eutherian). This is the first examination of ATRX and ATRY in the developing mammalian gonad and fetus. ATRX and ATRY were strongly expressed in the developing male and female gonad respectively, of both species. In testes, ATRY expression was detected in the Sertoli cells, germ cells and some interstitial cells. In the developing ovaries, ATRX was initially restricted to the germ cells, but was present in the granulosa cells of mature ovaries from the primary follicle stage onwards and in the corpus luteum. ATRX mRNA expression was also examined outside the gonad in both mouse and tammar wallaby whole embryos. ATRX was detected in the developing limbs, craniofacial elements, neural tissues, tail and phallus. These sites correspond with developmental deficiencies displayed by ATR-X patients.

Conclusions

There is a complex expression pattern throughout development in both mammals, consistent with many of the observed ATR-X syndrome phenotypes in humans. The distribution of ATRX mRNA and protein in the gonads was highly conserved between the tammar and the mouse. The expression profile within the germ cells and somatic cells strikingly overlaps with that of DMRT1, suggesting a possible link between these two genes in gonadal development. Taken together, these data suggest that ATRX has a critical and conserved role in normal development of the testis and ovary in both the somatic and germ cells, and that its broad roles in early mammalian development and gonadal function have remained unchanged for over 148 million years of mammalian evolution.  相似文献   

8.
9.
A homozygous nonsense mutation (Ter) in murine Dnd1 (Dnd1Ter/Ter) results in a significant early loss of primordial germ cells (PGCs) prior to colonization of the gonad in both sexes and all genetic backgrounds tested. The same mutation also leads to testicular teratomas only on the 129Sv/J background. Male mutants on other genetic backgrounds ultimately lose all PGCs with no incidence of teratoma formation. It is not clear how these PGCs are lost or what factors directly control the strain-specific phenotype variation. To determine the mechanism underlying early PGC loss we crossed Dnd1Ter/Ter embryos to a Bax-null background and found that germ cells were partially rescued. Surprisingly, on a mixed genetic background, rescued male germ cells also generated fully developed teratomas at a high rate. Double-mutant females on a mixed background did not develop teratomas, but were fertile and produced viable off-spring. However, when Dnd1Ter/Ter XX germ cells developed in a testicular environment they gave rise to the same neoplastic clusters as mutant XY germ cells in a testis. We conclude that BAX-mediated apoptosis plays a role in early germ cell loss and protects from testicular teratoma formation on a mixed genetic background.  相似文献   

10.
The left gonad from female chick embryos at 4–12 days of incubation was cultured in vitro as pieces of intact gonad, pieces of isolated cortex, and groups of pure germ cells. All cultures were maintained for a time equal to 17 days in ovo. At the end of the culture period, a cytological and quantitative study was made on the germ cells.The results show that some germ cells in pieces of intact 6-day gonad and pieces of 6-day cortex complete their normal developmental sequence and enter zygotene. This shows that the factors that control the differentiation of the germ cells reside in the cortex of the gonad and their expression does not depend upon the pituitary and the medullary estrogens after 6 days of incubation.Germ cells that are cultured as isolated cells do not attach to the tissue culture substrate, do not divide mitotically, and do not enter zygotene. Evidence is presented that suggests 12-day germ cells do enter zygotene when cultured with pieces of 12-day cortex. These data suggest the differentiation of the female germ cells is regulated by the somatic cells of the cortex.  相似文献   

11.
12.
The development of the gonad in Oryzias celebensis was studied by light and electron microscopy. The path of PGC-migration, the time of the sex-differentiation, and the pattern of germ cell proliferation were almost identical to those in O. latipes. The most conspicuous difference was in the distribution of germ cells after migration. The gonadal anlage in O. celebensis developed only on the right side of the dorsal mesentery, although PGCs were stituated on the both sides of the embryos before migration. The testis retained its unilateral condition throughout development and acquired a unilobed shape. In the female, the right presumptive ovary developed over the mesentery, and the ovary became bilobed. Thereafter, right and left parts of the presumptive ovary fused to develop into a single ovary in the adult fish. The situation appears to be comparable to the gonadal asymmetry in birds, but the present observations suggest that the developmental processes of the asymmetrical gonads in this fish are quite different from those in birds.  相似文献   

13.
The degree of conservation among phyla of early mechanisms that pattern the left–right (LR) axis is poorly understood. Larvae of sea urchins exhibit consistently oriented LR asymmetry. The main part of the adult rudiment is formed from the left coelomic sac of larvae, the left hydrocoel. Although this left preference is conserved among all echinoderm larvae, its mechanism is largely not understood. Using two marker genes, HpNot and HpFoxFQ-like, which are asymmetrically expressed during larval development of the sea urchin Hemicentrotus pulcherrimus, we examined in this study the possibility that the recently discovered ion flux mechanism controls asymmetry in sea urchins as it does in several vertebrate species. Several ion-transporter inhibitors were screened for the ability to alter the expression of the asymmetric marker genes. Blockers of the H+/K+-ATPase (omeprazole, lansoprazole and SCH28080), as well as a calcium ionophore (A23187), significantly altered the normal sidedness of asymmetric gene expression. Exposure to omeprazole disrupted the consistent asymmetry of adult rudiment formation in larvae. Immuno-detection revealed that H+/K+-ATPase-like antigens in sea urchin embryos were present through blastula stage and exhibited a striking asymmetry being present in a single blastomere in 32-cell embryos. These results suggest that, as in vertebrates, endogenous spatially-regulated early transport of H+ and/or K+, and also of Ca2+, functions in the establishment of LR asymmetry in sea urchin development.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
15.
A temperature-sensitive mutation, isx-1(hc17), is reported in the nematode Caenorhabditis elegans which alters the sexual phenotypes of both genotypic sexes. At the restrictive temperature, XX animals are functionally female rather than hermaphroditic due to the absence of spermatogenesis, and XO animals develop as intersexes. These intersexes have normal male head and tail structures and exhibit some mating behavior, but possess hermaphrodite-like gonads which produce no sperm and usually contain a few oocytes. An abortive vulva is usually present and evidence is presented which suggests that the formation of the vulva by the hypodermis is induced by the underlying gonad. The direct effects of the mutation are confined to the descendants of four primordial gonad cells. Gametogenesis and gonad sheath development do not seem to be tightly coupled and are shown to differ in their responses to X-chromosome dosage. The interaction of the intersex mutation with mutant alleles of two transformer genes tra-1 and tra-2 is discussed and a model for the action of these genes in gonad development and sex determination is proposed.  相似文献   

16.
17.
Bilateral asymmetry in Caenorhabditis elegans arises in part from cell lineages that differ on the left and right sides of the animal. The unpaired MI neuron descends from the right side of an otherwise left-right symmetric cell lineage that generates the MI neuron on the right and the e3D epithelial cell on the left. We isolated mutations in three genes that caused left-right symmetry in this normally asymmetric cell lineage by transforming MI into an e3D-like cell. These genes encode the proneural bHLH proteins NGN-1 and HLH-2 and the Otx homeodomain protein CEH-36. We identified the precise precursor cells in which ceh-36 and ngn-1 act, and showed that CEH-36 protein is asymmetrically expressed and is present in an MI progenitor cell on the right but not in its bilateral counterpart. This asymmetric CEH-36 expression promotes asymmetric ngn-1 and hlh-2 expression, which in turn induces asymmetric MI neurogenesis. Our results indicate that this left-right asymmetry is specified within the two sister cells that first separate the left and right branches of the cell lineage. We conclude that the components of an evolutionarily conserved Otx/bHLH pathway act sequentially through multiple rounds of cell division on the right to relay an initial apparently cryptic asymmetry to the presumptive post-mitotic MI neuron, thereby creating an anatomical bilateral asymmetry in the C. elegans nervous system.  相似文献   

18.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

19.
The germ cell lineage is first recognized as a population of mitotically proliferating primordial germ cells that migrate toward the gonadal ridge. Shortly after arriving at the gonadal ridge, the germ cells begin to initiate a commitment to gamete production in the developing gonad. The mechanisms controlling this transition are poorly understood. We recently reported that a mouse germ cell nuclear antigen 1 (GCNA1) is initially detected in both male and female germ cells as they reach the gonad at 11.5 days postcoitum (dpc). GCNA1 is continually expressed in germ cells through all stages of gametogenesis until the diplotene/dictyate stage of meiosis I. Since GCNA1 expression commences soon after primordial germ cells arrive at the gonadal ridge, we wanted to determine whether the gonadal environment was essential for induction of GCNA1 expression. By examining GCNA1 expression in germ cells that migrate ectopically into the adrenal gland, we determined that both the gonadal and adrenal gland environments allow GCNA1 expression. We also examined GCNA1 expression in Ftz-F1 null mice, which are born lacking gonads and adrenal glands. During embryonic development in the Ftz-F1 null mice, the gonad and most germ cells undergo apoptotic degeneration at about 12.5 dpc. While most of the germ cells undergo apoptosis without expressing GCNA1, a few surviving germs cells, especially outside the involuting gonad clearly express GCNA1. Thus, although the Ftz-F1 gene is essential for gonadal and adrenal development, induction of GCNA1 expression in germ cells does not require Ftz-F1 gene products. The finding that germ cell GCNA1 expression is not restricted to the gonadal environment and is not dependent on the Ftz-F1 gene products suggests that GCNA1 expression may be initiated in the germ cell lineage by autonomous means. Mol. Reprod. Dev. 48:154–158, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
In all vertebrates, invariant left/right (L/R) positioning and organization of the internal viscera is controlled by a conserved pathway. Nodal, a member of the TGFbeta superfamily is a critical upstream component responsible for initiating L/R axis determination. Asymmetric Nodal expression in the node preceeds and foreshadows morphological L/R asymmetry. Here we address the mechanism of Nodal activation in the left LPM by studying the function of a novel enhancer element, the AIE. We show this element is exclusively active in cells of the left lateral plate mesoderm (LPM) and is not itself responding to Nodal asymmetry. To test the hypothesis that this element may initiate asymmetric Nodal expression in the LPM, we deleted it from the mouse germ line. Mice homozygous for the AIE deletion (Nodal(deltaaie/deltaaie)) show no defects. However, we find that the AIE contributes to regulating the level of asymmetric Nodal activity; analysis of transheterozygous embryos (Nodal(deltaaie/null)) shows reduced Nodal expression in the left LPM associated with a low penetrance of L/R defects. Our findings point to the existence of two independent pathways that control Nodal expression in the left LPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号