首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus is a common hospital- and community-acquired bacterium that can cause devastating infections and is often multidrug-resistant. Iron acquisition is required by S. aureus during an infection, and iron acquisition pathways are potential targets for therapies. The gene NWMN2274 in S. aureus strain Newman is annotated as an oxidoreductase of the diverse pyridine nucleotide-disulfide oxidoreductase (PNDO) family. We show that NWMN2274 is an electron donor to IsdG and IsdI catalyzing the degradation of heme, and we have renamed this protein IruO. Recombinant IruO is a FAD-containing NADPH-dependent reductase. In the presence of NADPH and IruO, either IsdI or IsdG degraded bound heme 10-fold more rapidly than with the chemical reductant ascorbic acid. Varying IsdI-heme substrate and monitoring loss of the heme Soret band gave a Km of 15 ± 4 μm, a kcat of 5.2 ± 0.7 min−1, and a kcat/Km of 5.8 × 103 m−1 s−1. From HPLC and electronic spectra, the major heme degradation products are 5-oxo-δ-bilirubin and 15-oxo-β-bilirubin (staphylobilins), as observed with ascorbic acid. Although heme degradation by IsdI or IsdG can occur in the presence of H2O2, the addition of catalase and superoxide dismutase did not disrupt NADPH/IruO heme degradation reactions. The degree of electron coupling between IruO and IsdI or IsdG remains to be determined. Homologs of IruO were identified by sequence similarity in the genomes of Gram-positive bacteria that possess IsdG-family heme oxygenases. A phylogeny of these homologs identifies a distinct clade of pyridine nucleotide-disulfide oxidoreductases likely involved in iron uptake systems. IruO is the likely in vivo reductant required for heme degradation by S. aureus.  相似文献   

2.
《Cell reports》2020,30(1):61-68.e4
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
  相似文献   

3.
A heterozygous frameshift mutation causing a 12-amino acid extension to the C terminus of atrial natriuretic peptide (ANP) was recently genetically linked to patients with familial atrial fibrillation (Hodgson-Zingman, D. M., Karst, M. L., Zingman, L. V., Heublein, D. M., Darbar, D., Herron, K. J., Ballew, J. D., de Andrade, M., Burnett, J. C., Jr., and Olson, T. M. (2008) N. Engl. J. Med. 359, 158–165). The frameshift product (fsANP), but not wild-type ANP (wtANP), was elevated in the serum of affected patients, but the molecular basis for the elevated peptide concentrations was not determined. Here, we measured the ability of fsANP to interact with natriuretic peptide receptors and to be proteolytically degraded. fsANP and wtANP bound and activated human NPR-A and NPR-C similarly, whereas fsANP had a slightly increased efficacy for human NPR-B. Proteolytic susceptibility was addressed with novel bioassays that measure the time required for kidney membranes or purified neutral endopeptidase to abolish ANP-dependent activation of NPR-A. The half-life of fsANP was markedly greater than that of wtANP in both assays. Additional membrane proteolysis studies indicated that wtANP and fsANP are preferentially degraded by neutral endopeptidase and serine peptidases, respectively. These data indicate that the familial ANP mutation associated with atrial fibrillation has only minor effects on natriuretic peptide receptor interactions but markedly modifies peptide proteolysis.Natriuretic peptides are pleiotropic factors that regulate blood pressure, cardiac hypertrophy, and long bone growth (1). Humans express three family members, atrial natriuretic peptide (ANP),3 B-type natriuretic peptide, and C-type natriuretic peptide (CNP). Each peptide is the product of a separate gene and contains a highly conserved 17-amino acid disulfide-linked ring structure that is required for biological activity. Atrial stretch causes ANP to be released from stored granules as a result of cardiovascular stresses like congestive heart failure. Once released into the circulation, ANP binds receptors in multiple tissues to reduce the load on the heart by stimulating natriuresis, diuresis, extravasation, vasorelaxation, and inhibiting the renin-angiotensin-aldosterone system (1).Natriuretic peptides exert their effects by binding one or more of three natriuretic peptide receptors. Natriuretic peptide receptor A (NPR-A) is the endogenous receptor for ANP and BNP (2, 3). NPR-A is a transmembrane guanylyl cyclase that, upon ligand binding, synthesizes the second messenger cGMP that mediates the renal and vascular effects of ANP and BNP (4, 5). Meanwhile, natriuretic peptide receptor B (NPR-B) is the receptor for CNP (6). NPR-B is highly homologous to NPR-A and also possesses guanylyl cyclase activity. The primary ligand for NPR-B is CNP, but this receptor can also be activated by very high concentrations of ANP or BNP (6). CNP-dependent activation of NPR-B stimulates long bone growth and may also inhibit cardiac hypertrophy (7). The third natriuretic peptide receptor is natriuretic peptide receptor C (NPR-C). Unlike NPR-A and NPR-B, NPR-C does not contain a guanylyl cyclase domain (8). Instead, the primary function of NPR-C is to control local natriuretic peptide concentrations through receptor-mediated internalization and degradation. Thus, it is typically referred to as the clearance receptor (9). In addition to its role in clearing natriuretic peptides from the circulation, NPR-C has also been shown to signal in a G protein-dependent manner (10). Finally, the other mechanism for natriuretic peptide removal is proteolytic degradation. Neutral endopeptidase (EC 3.4.24.11), which is also referred to as neprilysin or NEP, has been suggested to be the primary ANP-degrading enzyme in tissues associated with ANP clearance (1113). Furthermore, inhibitors of NEP have been shown to increase circulating concentrations of ANP in rats (14).In a recent New England Journal of Medicine article, Hodgson-Zingman et al. (15) investigated the genetic basis for early onset atrial fibrillation in a family with white European ancestry. Using linkage analysis they found that all affected family members contained a single allele with a frameshift mutation in the coding portion of the ANP gene. The mutation causes a two-base pair deletion in exon 3 that eliminates the original stop codon and causes 12 new amino acids to be appended to the C terminus of the mature peptide. Thus, the peptide resulting from the frameshift mutation (fsANP) consists of 40 amino acids, whereas the wild-type peptide (wtANP) consists of 28 amino acids (Fig. 1). Importantly, the plasma levels of fsANP were shown to be 5–10-fold higher than the plasma concentrations of wtANP in affected individuals.Open in a separate windowFIGURE 1.Cartoon schematic of the primary amino acid structure of human atrial natriuretic peptide (wtANP) and the primary amino acid structure of the ANP frameshift mutation (fsANP). The 12-amino acid extension of fsANP is shaded in light gray. The dark gray shading indicates residues conserved in all natriuretic peptides. The black bars indicate disulfide bonds.Although Hodgson-Zingman et al. elegantly identified the ANP mutation associated with patients with early onset atrial fibrillation, they did not determine how this mutation affects the ability of ANP to interact with its known biological partners or why this mutation leads to elevated peptide concentrations. Theoretically, modulated binding to NPR-A, NPR-B, or NPR-C or altered proteolytic processing of ANP could lead to the observed disease. In this report, we identified subtle differences in the ability of fsANP and wtANP to interact with natriuretic peptide receptors but major differences in the proteolytic degradation of these peptides.  相似文献   

4.
Degradation of elastin by a cysteine proteinase from Staphylococcus aureus   总被引:3,自引:0,他引:3  
Staphylococcus aureus is known to produce three very active extracellular proteinases. One of these enzymes, a cysteine proteinase, after purification to homogeneity was found to degrade insoluble bovine lung elastin at a rate comparable to human neutrophil elastase. This enzyme had no detectable activity against a range of synthetic substrates normally utilized by elastase, chymotrypsin, or trypsin-like proteinases. However, it did hydrolyze the synthetic substrate carbobenzoxy-phenylalanyl-leucyl-glutamyl-p-nitroanilide (Km = 0.5 mM, kcat = 0.16 s-1). The proteolytic activity of the cysteine proteinase was rapidly and efficiently inhibited by alpha 2-macroglobulin and also by the cysteine-specific inhibitor rat T-kininogen (Ki = 5.2 X 10(-7) M). Human kininogens, however, did not inhibit. Human plasma apparently contains other inhibitors of this enzyme, since plasma depleted of alpha 2-macroglobulin retained significant inhibitory capacity. The elastolytic activity of this S. aureus proteinase and its lack of control by human kininogens or cystatin C may explain some of the connective tissue destruction seen in bacterial infections due to this and related organisms such as may occur in septicemia, septic arthritis, and otitis.  相似文献   

5.
Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.  相似文献   

6.
Group II phospholipase A2 (PLA2) is an enzyme that has marked antibacterial properties in vitro. To define the role of group II PLA2 in the defense against Staphylococcus aureus, we studied host responses in transgenic mice expressing human group II PLA2 and group II PLA2-deficient C57BL/6J mice in experimental S. aureus infection. After the administration of S. aureus, the transgenic mice showed increased expression of group II PLA2 mRNA in the liver and increased concentration of group II PLA2 in serum, whereas the PLA2-deficient mice completely lacked the PLA2 response. Expression of human group II PLA2 resulted in reduced mortality and improved the resistance of the mice by killing the bacteria as indicated by low numbers of live bacteria in their tissues. Human group II PLA2 was responsible for the bactericidal activity of transgenic mouse serum. These results suggest a possible role for group II PLA2 in the innate immunity against S. aureus infection.  相似文献   

7.
Although the importance of human apolipoprotein E (apoE) in vascular diseases has clearly been established, most of the research on apoE has focused on its role in cholesterol metabolism. In view of the observation that apoE and its functional domains impact extracellular matrix (ECM) remodeling, we hypothesized that apoE could also confer protection against ECM degradation by mechanisms independent of its role in cholesterol and lipoprotein transport. The ECM degrading enzyme, heparanase, is secreted by cells as pro-heparanase that is internalized through low-density lipoprotein (LDL) receptor-related protein-1 (LRP-1) to become enzymatically active. Both apoE and pro-heparanase bind the LRP-1. We further hypothesized that an apoE mimetic peptide (apoEdp) would inhibit the production of active heparanase by blocking LRP-1-mediated uptake of pro-heparanase and thereby decrease degradation of the ECM. To test this hypothesis, we induced the expression of heparanase by incubating human retinal endothelial cells (hRECs) with high glucose (30 mM) for 72 hours. We found that elevated expression of heparanase by high glucose was associated with increased shedding of heparan sulfate (ΔHS) and the tight junction protein occludin. Treatment of hRECs with 100 µM apoEdp in the presence of high glucose significantly reduced the expression of heparanase, shedding of ΔHS, and loss of occludin as detected by Western blot analysis. Either eye drop treatment of 1% apoEdp topically 4 times a day for 14 consecutive days or intraperitoneal injection (40 mg/kg) of apoEdp daily for 14 consecutive days in an in vivo mouse model of streptozotocin-induced diabetes inhibited the loss of tight junction proteins occludin and zona occludin- 1 (ZO-1). These findings imply a functional relationship between apoE and endothelial cell matrix because the deregulation of these molecules can be inhibited by a short peptide derived from the receptor-binding region of apoE. Thus, strategies targeting ECM-degrading enzymes could be therapeutically beneficial for treating diabetic retinopathy.  相似文献   

8.
Growth of Staphylococcus aureus ATCC 6538P was studied in stationary broth cultures (11 mm deep) exposed to hyperbaric oxygen (100% O2 at 3 atm absolute). The minimal inhibitory concentration (MIC) of the following antibiotics was determined after exposure to high-pressure oxygen (HPO) for 3, 6, and 12 hr: penicillin, streptomycin, tetracycline, oxytetracycline, kanamycin, and cephalothin. Logarithmic growth during exposure to HPO was retarded 60%. Air at 3 atm absolute did not retard growth. The longer the exposure of tube dilution tests to HPO, the lower the MIC. Regardless of the antibiotic used, MIC values relative to 100% for unexposed controls were similar for given exposures, and averaged 73% after 3 hr of exposure to HPO, 53% after 6 hr, and 34% after 12 hr. Similar enhancement with HPO and an iodophor suggests occurrence of a general phenomenon with antibacterial agents. Although HPO alone is primarily bacteriostatic, combined therapy with antibiotics and HPO may be useful against bacterial infections because the therapeutic effectiveness of a maximal dosage of antibiotic could be increased.  相似文献   

9.
[背景]金黄色葡萄球菌作为一种条件致病菌,在临床感染中扮演着重要的角色,需要研究更多更有效的防治手段.[目的]分离金黄色葡萄球菌噬菌体,研究其生物学特性,从而为金黄色葡萄球菌的替代防治提供理论借鉴.[方法]以金黄色葡萄球菌D085为宿主从污水中分离得到一株噬菌体,命名为vB_SauS_SAP3,用PEG8000浓缩、氯...  相似文献   

10.
Staphylococcus aureus is the most common cause of hospital-acquired bacteremia. Due to emergence of antibiotic-resistant strains, these infections present a serious public health threat. In this study, to develop a broadly protective vaccine, we tested whether immune responses induced by several proteins associated with S. aureus toxicity could protect mice from lethal challenge with human clinical S. aureus isolate USA300. We found that the surface protein A (SasA) of S. aureus could protect mice from lethal challenge of the bacteria.  相似文献   

11.
Metabolism of Lactose by Staphylococcus aureus and Its Genetic Basis   总被引:19,自引:13,他引:6  
THE METABOLISM OF LACTOSE WAS FOUND TO BE CONTROLLED BY THREE GENES: a gene for the synthesis of a beta-galactosidase attacking only phosphorylated galactosides; a gene for a protein permitting concentration of phosphorylated galactosides which probably acts by transferring phosphates to them; and a gene regulating the first two structural genes. The three genes are closely linked and may have the same order as in Escherichia coli. Galactose-6-phosphate was found to be a better inducer of lactose utilization than is galactose or any other inducer. The inhibition of induction by isopropylthiogalactoside was found to occur at the level of the protein permitting the concentration of galactoside phosphates.  相似文献   

12.
13.
Chromogranin A (CgA) is a soluble glycoprotein stored along with hormones and neuropeptides in secretory granules of endocrine cells. In the last four decades, intense efforts have been concentrated to characterize the structure and the biological function of CgA. Besides, CgA has been widely used as a diagnostic marker for tumors of endocrine origin, essential hypertension, various inflammatory diseases, and neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer’s disease. CgA displays peculiar structural features, including numerous multibasic cleavage sites for prohormone convertases as well as a high proportion of acidic residues. Thus, it has been proposed that CgA represents a precursor of biologically active peptides, and a “granulogenic protein” that plays an important role as a chaperone for catecholamine storage in adrenal chromaffin cells. The widespread distribution of CgA throughout the neuroendocrine system prompted several groups to investigate the role of CgA in peptide hormone sorting to the regulated secretory pathway. This review summarizes the findings and theoretical concepts around the molecular machinery used by CgA to exert this putative intracellular function. Since CgA terminal regions exhibited strong sequence conservation through evolution, our work focused on the implication of these domains as potential functional determinants of CgA. Characterization of the molecular signals implicating CgA in the intracellular traffic of hormones represents a major biological issue that may contribute to unraveling the mechanisms defining the secretory competence of neuroendocrine cells.  相似文献   

14.
A novel specifically targeted antimicrobial peptide (STAMP) that was especially effective against methicillin-resistant Staphylococcus aureus (MRSA) was designed by fusing the AgrD1 pheromone to the N-terminal end of plectasin. This STAMP was named Agplectasin, and its gene was synthesized and expressed in Pichia pastoris X-33 via pPICZαA. The highest amount of total secreted protein reached 1,285.5 mg/l at 108 h during the 120-h induction. The recombinant Agplectasin (rAgP) was purified by cation exchange chromatography and hydrophobic exchange chromatography; its yield reached 150 mg/l with 94 % purity. The rAgP exhibited strong bactericidal activity against S. aureus but not Staphylococcus epidermidis or other types of tested bacteria. A bactericidal kinetics assay showed that the rAgP killed over 99.9 % of tested S. aureus (ATCC 25923 and ATCC 43300) in both Mueller–Hinton medium and human blood within 10 h when treated with 4× minimal inhibitory concentration. The rAgP caused only approximately 1 % hemolysis of human blood cells, even when the concentration reached 512 μg/ml, making it potentially feasible as a clinical injection agent. In addition, it maintained a high activity over a wide range of pH values (2.0–10.0) and demonstrated a high thermal stability at 100 °C for 1 h. These results suggested that this STAMP has the potential to eliminate MRSA strains without disrupting the normal flora.  相似文献   

15.
We report a functional type I toxin-antitoxin (TA) module expressed by a human pathogen, Staphylococcus aureus. TA systems consist of stable toxins and labile antitoxins encoded within small genetic modules widespread in eubacteria and archaea. TA genes provide stress adaptation and protection against DNA loss or invasion. The genes encoding the SprA1 toxic peptide (PepA1) and the SprA1AS RNA antitoxin are within a pathogenicity island on opposite strands and possess a 3′ overlap. To prevent peptide toxicity during S. aureus growth, PepA1 expression from stable (half-life > 3 h) SprA1 is repressed by elevated amounts of unstable (half-life = ∼10 mn) SprA1AS. In vivo, PepA1 localizes at the bacterial membrane and triggers S. aureus death. Based on NMR and CD data, its solution structure was solved and is a long bent, interrupted helix. Molecular dynamics simulations indicate that PepA1 compaction and helical content fluctuate in accordance with its cytoplasm or membrane location. When inserted into the S. aureus membrane, the PepA1 conformation switches to a ∼7-nm-long continuous helix, presumably forming pores to alter membrane integrity. PepA1 expression is induced upon acidic and oxidative stresses by reducing SprA1AS levels. As an altruistic behavior during infection, some cells may induce the expression of that toxin that would facilitate departure from the host immune cells for spreading.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号