首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite increasing information about postglacial recolonization of European freshwater systems, very little is known about pre-Pleistocene history. We used data on the recent distribution and phylogenetic relationships of stone loach mitochondrial lineages to reconstruct the initial colonization pattern of the Danube river system, one of the most important refuges for European freshwater ichthyofauna. Fine-scale phylogeography of the Danubian populations revealed five highly divergent lineages of pre-Pleistocene age and suggested the multiple origin of the Danubian stone loach. The mean sequence divergence among lineages extended from 7.0% to 13.4%, which is the highest intraspecific divergence observed so far within this river system. Based on the phylogeographical patterns, we propose the following hypothesis to relate the evolution and dispersal of the studied species with the evolution of the Danube river system and the Carpathian Mountains: (i) during the warmer period in the Miocene, the areas surrounding the uplifting Alps and Carpathians served as mountainous refuges for cold-water adapted fish and promoted the diversification of its populations, and (ii) from these refuges, colonization of the emerging Danube river system may have taken place following the retreat of the Central Paratethys. Co-existence of highly divergent mtDNA lineages in a single river system shows that range shifts in response to climatic changes during the Quaternary did not cause extensive genetic homogenization in the stone loach populations. However, the wide distribution of some mtDNA lineages indicates that the Pleistocene glaciations promoted the dispersal and mixing of populations through the lowlands.  相似文献   

2.
Vorticella includes more than 100 currently recognized species and represents one of the most taxonomically challenging genera of ciliates. Molecular phylogenetic analysis of Vorticella has been performed so far with only sequences coding for small subunit ribosomal RNA (SSU rRNA); only a few of its species have been investigated using other genetic markers owing to a lack of similar sequences for comparison. Consequently, phylogenetic relationships within the genus remain unclear, and molecular discrimination between morphospecies is often difficult because most regions of the SSU rRNA gene are too highly conserved to be helpful. In this paper, we move molecular systematics for this group of ciliates to the infrageneric level by sequencing additional molecular markers—fast-evolving internal transcribed spacer (ITS) regions—in a broad sample of 66 individual samples of 28 morphospecies of Vorticella collected from Asia, North America and Europe. Our phylogenies all featured two strongly supported, highly divergent, paraphyletic clades (I, II) comprising the morphologically defined genus Vorticella. Three major lineages made up clade I, with a relatively well-resolved branching order in each one. The marked divergence of clade II from clade I confirms that the former should be recognized as a separate taxonomic unit as indicated by SSU rRNA phylogenies. We made the first attempt to elucidate relationships between species in clade II using both morphological and multi-gene approaches, and our data supported a close relationship between some morphospecies of Vorticella and Opisthonecta, indicating that relationships between species in the clade are far more complex than would be expected from their morphology. Different patterns of helix III of ITS2 secondary structure were clearly specific to clades and subclades of Vorticella and, therefore, may prove useful for resolving phylogenetic relationships in other groups of ciliates.  相似文献   

3.
We present a phylogenetic investigation of the Northern Clade, the major monophyletic clade within the freshwater fish family Cobitidae, one of the most prominent families of freshwater fishes found in Asian and European waters. Phylogenetic reconstructions based on the cytochrome b and RAG-1 genes show the genera Microcobitis, Sabanejewia, Koreocobitis and Kichulchoia as monophyletic groups. These reconstructions also show a Cobitis sensu lato and a Misgurnus sensu lato group. The Cobitis sensu lato group includes all species of Cobitis, Iksookimia, Niwaella and Kichulchoia, while the Misgurnus sensu lato group includes Misgurnus, Paramisgurnus and Koreocobitis. Although the monophyly of both the Cobitis sensu lato and Misgurnus sensu lato groups is supported, relationships within the groups are incongruent with current generic definitions. The absence of monophyly of most genera included in the Cobitis sensu lato group (Cobitis, Iksookimia and Niwaella) or their low genetic differentiation (Kichuchoia) supports their consideration as synonyms of Cobitis. Molecular phylogenies indicate that the Asian species of Misgurnus experienced a mitochondrial introgression from a lineage of Cobitis. We also find two nuclear haplotypes in the same Cobitis species from the Adriatic area that, in the absence of morphological differentiation, may indicate molecular introgression. Most lineages within the Northern Clade consist of species found in East Asia. However, some lineages also contain species from Europe and Asia Minor. The phylogenetic relationships presented here are consistent with previous studies suggesting an East Asian origin of the Northern Clade. According to the current distributions and phylogenetic relationships of the Misgurnus sensu lato and Cobitis clade lineages, particularly of M. fossilis and C. melanoleuca, the range expansion of East Asian species into Europe was most likely via Siberia into Northern and Central Europe. Phylogenetic analyses also show that the Cobitis sensu lato group consists of two clear subgroups (I and II), each presenting geographical differences. Subgroup I is distributed exclusively in East Asian drainages with an Eastern European offshoot (C. melanoleuca), whereas Subgroup II includes species widespread throughout Europe (including the Mediterranean), Asia Minor, the Black Sea and the Caucasus, with some lineages related to species restricted to East Asia.  相似文献   

4.
The wide distribution of the Neotropical freshwater catfish Rhamdia offers an excellent opportunity to investigate the historical processes responsible for modeling South America’s hydrogeological structure. We used sequences from cis-Andean and Mesoamerican Rhamdia species to reconstruct and estimate divergence times among cis-Andean lineages, correlating the results with known geological events. Species delimitation methods based on distance (DNA barcoding and BIN) and coalescence (GMYC) approaches identified nine well-supported lineages from the cis-Andean region from sequences available in the BOLD dataset. The cis-Andean Rhamdia lineages diversification process began in Eocene and represented the split between cis-Andean and Mesoamerican clades. The cis-Andean clade contains two principal groups: Northwest clade (MOTUs from Amazon, Essequibo, Paraguay, and Itapecuru basins) and Southeast clade (Eastern Brazilian shield basins (Paraná, Uruguay, Iguaçu, and São Francisco) plus eastern coastal basins). The diversification of the cis-Andean Rhamdia lineages results from vicariance and geodispersion events, which played a key role in the current intricate distribution pattern of the Rhamdia lineages. The wide geographical distribution and large size of the specimens make it attractive to cultivate in different countries of the Neotropical region. The lineages delimitation minimizes identification mistakes, unintentional crossings by aquaculture, and reduces natural stocks contamination.  相似文献   

5.
Phylogenetic analyses of Mugilidae species from the China coast were carried out based on 16S and 12S rRNA mitochondrial gene sequences by maximum parsimony, maximum likelihood, Bayesian inference and neighbor joining analysis in the present study. The results suggested that Mugil cephalus is the most genetically divergent species among the Mugilidae. The four Liza species clustered together and formed a monophyletic group. The genera Osteomugil showed closer affiliation with Valamugil than with Ellochelon; these three genera then grouped together to form a monophyletic clade presenting as the sister group to Liza. Analyses of phylogenetic and genetic distance indicated that Southern and Northern lineages of Liza haematocheila may be two different species; likewise, strong genetic divergence existed between Southern and Northern M. cephalus lineages. In addition, our results supported the Southern origin of Chinese Mugilids, which is contrary to the hypothesis based on morphological characters.  相似文献   

6.
The taxonomic status of some genera within the Phasianidae remains controversial. To demonstrate the phylogenetic relationships of four endemic genera (Tetraophasis, Ithaginis, Crossoptilon and Chrysolophus) and other 11 genera of Phasianidae in China, a total of 1070 nucleotides of mitochondrial DNA (mtDNA) control-region genes were sequenced. There are 376 variable sites including 345 parsimony sites. The genetic distance ranged from 0.067 (Chrysolophus and Phasianus) to 0.181 (Perdix and Bambusicola) among the 15 genera. Maximum likelihood method was used to construct a phylogenetic tree, which grouped all the genera into two deeply divergent clades. Perdix was shown to be a non-partridge genus. Alternatively, it appears ancestral to either partridges or pheasants. The sibling taxa of the four endemic genera were Lophophorus, Tragopan, Lophura and Phasianus, respectively. Calibrated rates of molecular evolution suggested that the divergence time between the four genera and related taxa was 4.00–5.00 million years ago, corresponding to the Pliocene. Considering their molecular phylogenetics, fossil and geographical distribution patterns, the four endemic genera might have originated in the southwestern mountains in China.  相似文献   

7.
Paleogeological events and Pleistocene climatic fluctuations have had profound influences on the genetic patterns and phylogeographic structure of species in southern China. In this study, we investigated the population genetic structure and Phylogeography of the Odorrana schmackeri species complex, mountain stream-dwelling odorous frogs, endemic to southern China. We obtained mitochondrial sequences (1,151bp) of the complete ND2 gene and two flanking tRNAs of 511 individuals from 25 sites for phylogeographic analyses. Phylogenetic reconstruction revealed seven divergent evolutionary lineages, with mean pairwise (K2P) sequence distances from 7.8% to 21.1%, except for a closer ND2 distance (3.4%). The complex geological history of southern China drove matrilineal divergence in the O. schmackeri species complex into highly structured geographical units. The first divergence between lineage A+B and other lineages (C-G) had likely been influenced by the uplift of coastal mountains of Southeast China during the Mio-Pliocene period. The subsequent divergences between the lineages C-G may have followed the formation of the Three Gorges and the intensification of the East Asian summer monsoon during the late Pliocene and early Pleistocene. Demographic analyses indicated that major lineages A and C have been experienced recent population expansion (c. 0.045–0.245 Ma) from multiple refugia prior to the Last Glacial Maximum (LGM). Molecular analysis suggest that these seven lineages may represent seven different species, three described species and four cryptic species and should at least be separated into seven management units corresponding to these seven geographic lineages for conservation.  相似文献   

8.
Introgressive hybridization may erode phenotypic divergence along environmental gradients, collapsing locally adapted populations into a hybrid swarm. Alternatively, introgression may promote phenotypic divergence by providing variation on which natural selection can act. In freshwater fishes, water flow often selects for divergent morphological traits in lake versus stream habitats. We tested the effects of introgression on lake–stream morphological divergence in the minnow Owens Tui Chub (Siphateles bicolor snyderi), which has been rendered endangered by introgession from the introduced Lahontan Tui Chub (Siphateles bicolor obesa). Using geometric morphometric analysis of 457 individual Tui Chub from thirteen populations, we found that both native and introgressing parent taxa exhibited divergent body and caudal fin shapes in lake versus stream habitats, but their trajectories of divergence were distinct. In contrast, introgressed populations exhibited intermediate body and caudal fin shapes that were not differentiated by habitat type, indicating that introgression has eroded phenotypic divergence along the lentic–lotic gradient throughout the historic range of the Owens Tui Chub. Individuals within hybrid populations were less morphologically variable than those within parent populations, suggesting hybrid adaptation to selective agents other than water flow or loss of variance by drift.  相似文献   

9.
The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.  相似文献   

10.
《Mycological Research》2007,111(2):176-185
The phylogenetic validity of Puccinia and Uromyces, Pucciniaceae, and closely related genera was evaluated using nucLSU rDNA sequences. Using a wide range of rust species with different life cycles and with different host specificities, Puccinia and Uromyces were shown to be highly polyphyletic and to also include representatives of the genera Aecidium, Cumminsiella, Dietelia, Endophyllum, Miyagia, and Uredo. Furthermore, the structure of the phylogenetic data did not reflect previous sub-generic delimitations based on teliospore pedicel structure, but rather suggests that at least two major lineages have evolved within Puccinia/Uromyces: Rusts with telial states on Poaceae were exclusively found in one of these groupings and those with telial states on Cyperaceae resided in the other lineage. This might suggest that the two lineages evolved in close association with these host groups in different biomes.  相似文献   

11.

Background and Aims

Subtribe Centaureinae appears to be an excellent model group in which to analyse satellite DNA and assess the influence that the biology and/or the evolution of different lineages have had on the evolution of this class of repetitive DNA. Phylogenetic analyses of Centaureinae support two main phases of radiation, leading to two major groups of genera of different ages. Furthermore, different modes of evolution are observed in different lineages, reflected by morphology and DNA sequences.

Methods

The sequences of 502 repeat units of the HinfI satellite DNA family from 38 species belonging to ten genera of Centaureinae were isolated and compared. A phylogenetic reconstruction was carried out by maximum likelihood and Bayesian inference.

Key Results

Up to eight different HinfI subfamilies were found, based on the presence of a set of diagnostic positions given by a specific mutation shared by all the sequences of one group. Subfamilies V–VIII were mostly found in older genera (first phase of radiation in the subtribe, late Oligocene–Miocene), although some copies of these types of repeats were also found in some species of the derived genera. Subfamilies I–IV spread mostly in species of the derived clade (second phase of radiation, Pliocene to Pleistocene), although repeats of these subfamilies exist in older species. Phylogenetic trees did not group the repeats by taxonomic affinity, but sequences were grouped by subfamily provenance. Concerted evolution was observed in HinfI subfamilies spread in older genera, whereas no genetic differentiation was found between species, and several subfamilies even coexist within the same species, in recently radiated groups or in groups with a history of recurrent hybridization of lineages.

Conclusions

The results suggest that the eight HinfI subfamilies were present in the common ancestor of Centaureinae and that each spread differentially in different genera during the two main phases of radiation following the library model of satellite DNA evolution. Additionally, differential speciation pathways gave rise to differential patterns of sequence evolution in different lineages. Thus, the evolutionary history of each group of Centaureinae is reflected in HinfI satellite DNA evolution. The data reinforce the value of satellite DNA sequences as markers of evolutionary processes.  相似文献   

12.
Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the “typical” euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae–Certesiidae–Aspidiscidae–Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.  相似文献   

13.
Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus and Leucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodium parasites infecting North American waterfowl as compared to those of the genera Haemoproteus and Leucocytozoon.  相似文献   

14.
The Diplostomidae Poirier, 1886 is a large, globally distributed family of digeneans parasitic in intestines of their definitive hosts. Diplostomum and Tylodelphys spp. are broadly distributed, commonly reported, and the most often sequenced diplostomid genera. The majority of published DNA sequences from these genera originated from larval stages only, which typically cannot be identified to the species level based on morphology alone. We generated partial large ribosomal subunit (28S) rRNA and cytochrome c oxidase subunit 1 (cox1) mtDNA gene sequences from 14 species/species-level lineages of Diplostomum, six species/species-level lineages of Tylodelphys, two species/species-level lineages of Austrodiplostomum, one species previously assigned to Paralaria, two species/species-level lineages of Dolichorchis and one unknown diplostomid. Our DNA sequences of 11 species/species-level lineages of Diplostomum (all identified to species), four species/species-level lineages of Tylodelphys (all identified to species), Austrodiplostomum compactum, Paralaria alarioides and Dolichorchis lacombeensis originated from adult specimens. 28S sequences were used for phylogenetic inference to demonstrate the position of Paralaria alarioides and Dolichorchis spp. within the Diplostomoidea and study the interrelationships of Diplostomum, Tylodelphys and Austrodiplostomum. Our results demonstrate that two diplostomids from the North American river otter (P. alarioides and a likely undescribed taxon) belong within Diplostomum. Further, our results demonstrate the non-monophyly of Tylodelphys due to the position of Austrodiplostomum spp., based on our phylogenetic analyses and morphology. Furthermore, the results of phylogenetic analysis of 28S confirmed the status of Dolichorchis as a separate genus. The phylogenies suggest multiple definitive host-switching events (birds to otters and among major avian groups) and a New World origin of Diplostomum and Tylodelphys spp. Our DNA sequences from adult digeneans revealed identities of 10 previously published lineages of Diplostomum and Tylodelphys, which were previously identified to genus only. The novel DNA data from this work provide opportunities for future comparisons of larval diplostomines collected in ecological studies.  相似文献   

15.
Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences) versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA). Median joining (MJ) haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete) mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop) versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs) distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (d XY = 0.00731; F ST = 0.849; P < 0.05), thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants) almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT), frequency distribution tests (D, F S) and phylogenetic analyses (RAxML) provide no evidence for positive selection or hybridization with the sympatric scaled quail (Callipepla squamata) as being explanatory factors for the two bobwhite maternal lineages observed. Instead, our analyses support the supposition that two diverged maternal lineages have survived from pre-expansion to post-expansion population(s), with the segregation of some slightly deleterious nonsynonymous mutations.  相似文献   

16.

Background and aims

Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera.

Methods

DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted.

Key Results

Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (MacrozamiaLepidozamiaEncephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia.

Conclusions

A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.  相似文献   

17.
Background and Aims Cephalotaxus is a paleo-endemic genus in East Asia that consists of about 7–9 conifer species. Despite its great economic and ecological importance, the relationships between Cephalotaxus and related genera, as well as the interspecific relationships within Cephalotaxus, have long been controversial, resulting in contrasting taxonomic proposals in delimitation of Cephalotaxaceae and Taxaceae. Based on plastome data, this study aims to reconstruct a robust phylogeny to infer the systematic placement and the evolutionary history of Cephalotaxus.MethodsA total of 11 plastomes, representing all species currently recognized in Cephalotaxus and two Torreya species, were sequenced and assembled. Combining these with previously published plastomes, we reconstructed a phylogeny of Cephalotaxaceae and Taxaceae with nearly full taxonomic sampling. Under a phylogenetic framework and molecular dating, the diversification history of Cephalotaxus and allied genera was explored.Key ResultsPhylogenetic analyses of 81 plastid protein-coding genes recovered robust relationships between Cephalotaxus and related genera, as well as providing a well-supported resolution of interspecific relationships within Cephalotaxus, Taxus, Torreya and Amentotaxus. Divergence time estimation indicated that most extant species of these genera are relatively young, although fossil and other molecular evidence consistently show that these genera are ancient plant lineages.ConclusionsOur results justify the taxonomic proposal that recognizes Cephalotaxaceae as a monotypic family, and contribute to a clear-cut delineation between Cephalotaxaceae and Taxaceae. Given that extant species of Cephalotaxus are derived from recent divergence events associated with the establishment of monsoonal climates in East Asia and Pleistocene climatic fluctuations, they are not evolutionary relics.  相似文献   

18.
This is the report about the secondary contact zone of coregonids in the Upper Volga basin. Two mitochondrial DNA (mtDNA) phylogenetic lineages of vendace Coregonus albula (Linnaeus, 1758) living in Lake Pleshcheyevo have been analyzed and compared in terms of morphological characters. These lineages have developed under the conditions of allopatry and are characterized by strong differences of the mitochondrial DNA sequences. The lineages have coexisted in the same lake since the last glaciation maximum (about 10,000 years ago). The morphological analysis has shown that representatives of both lineages correspond to C. albula, while slight, morphological variations between lineages indicate different food preferences and locomotor abilities. Scenarios where multiple distinct coexisting phylogenetic lineages are characterized by low levels of morpho-ecological divergence are uncommon. These situations are important for understanding biodiversity dynamics and the mechanisms that drive coexistence, adaptive divergence, hybridization, and extinction when genetically divergent lineages meet in secondary contact.  相似文献   

19.
Family Reoviridae, subfamily Spinareovirinae, includes nine current genera. Two of these genera, Aquareovirus and Orthoreovirus, comprise members that are closely related and consistently share nine homologous proteins. Orthoreoviruses have 10 dsRNA genome segments and infect reptiles, birds, and mammals, whereas aquareoviruses have 11 dsRNA genome segments and infect fish. Recently, the first 10-segmented fish reovirus, piscine reovirus (PRV), has been identified and shown to be phylogenetically divergent from the 11-segmented viruses constituting genus Aquareovirus. We have recently extended results for PRV by showing that it does not encode a fusion-associated small transmembrane (FAST) protein, but does encode an outer-fiber protein containing a long N-terminal region of predicted α-helical coiled coil. Three recently characterized 11-segmented fish reoviruses, obtained from grass carp in China and sequenced in full, are also divergent from the viruses now constituting genus Aquareovirus, though not to the same extent as PRV. In the current study, we reexamined the sequences of these three recent isolates of grass carp reovirus (GCRV)–HZ08, GD108, and 104–for further clues to their evolution relative to other aqua- and orthoreoviruses. Structure-based fiber motifs in their encoded outer-fiber proteins were characterized, and other bioinformatics analyses provided evidence against the presence of a FAST protein among their encoded nonstructural proteins. Phylogenetic comparisons showed the combination of more distally branching, approved Aquareovirus and Orthoreovirus members, plus more basally branching isolates GCRV104, GCRV-HZ08/GD108, and PRV, constituting a larger, monophyletic taxon not suitably recognized by the current taxonomic hierarchy. Phylogenetics also suggested that the last common ancestor of all these viruses was a fiber-encoding, nonfusogenic virus and that the FAST protein family arose from at least two separate gain-of-function events. In addition, an apparent evolutionary correlation was found between the gain or loss of NS-FAST and outer-fiber proteins among more distally branching members of this taxon.  相似文献   

20.
The genus Basidiophora has long been thought to contain only two species, Basidiophora entospora and Basidiophora kellermanii, the latter of which was transferred to a newly described monotypic genus, Benua, at the end of the twentieth century, leaving Basidiophora monotypic, despite its vast host range, including a member of the Eupatoriae and several genera in the subfamily Asteroideae of the Asteraceae. Using historic herbarium specimens, we demonstrate that while Benua kellermanii is genetically highly homogenous, at least seven distinct phylogenetic lineages exist within Basidiophora, which, based on sequence divergence, most likely constitute hitherto overlooked cryptic species. As the specimens from Symphyotrichum novae-angliae formed a well-supported clade with little variation, we consider Peronospora simplex described on this host as an independent species, which is transferred to the genus Basidiophora in this study. The phylogeny of the pathogens corresponds well to the phylogeny of the respective hosts, which is unusual in downy mildews and might hint at clade-limited colonisation and subsequent radiation to closely related hosts of Astereae or even suggest a co-evolution scenario. Our findings provide further evidence that species with assumed broad host ranges should be thoroughly evaluated with respect to their phylogenetic relationships, especially in biotrophic genera with only limited morphological diversity. In some cases, host specificity of genetically divergent lineages might be the only phenotypic trait remaining for species delimitation. Future detailed morphological comparisons are needed to reveal if the seemingly cryptic species of Basidiophora can be distinguished based on subtle morphological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号