首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Phagocytosis in macrophages is thought to involve insertion of cytoplasmic vesicles at sites of membrane expansion before particle ingestion ("focal" exocytosis). Capacitance (Cm) measurements of cell surface area were biphasic, with an initial rise indicative of exocytosis followed by a fall upon phagocytosis. Unlike other types of regulated exocytosis, the Cm rise was insensitive to intracellular Ca2+, but was inhibited by guanosine 5'-O-(2-thio)diphosphate. Particle uptake, but not Cm rise, was affected by phosphatidylinositol 3-kinase inhibitors. Inhibition of actin polymerization eliminated the Cm rise, suggesting possible coordination between actin polymerization and focal exocytosis. Introduction of anti-pan-dynamin IgG blocked Cm changes, suggesting that dynamin controls focal exocytosis and thereby phagocytosis. Similarly, recombinant glutathione S-transferase*amphiphysin-SH3 domain, but not a mutated form that cannot bind to dynamin, inhibited both focal exocytosis and phagocytosis. Immunochemical analysis of endogenous dynamin distribution in macrophages revealed a substantial particulate pool, some of which localized to a presumptive endosomal compartment. Expression of enhanced green fluorescent protein*dynamin-2 showed a motile dynamin pool, a fraction of which migrated toward and within the phagosomal cup. These results suggest that dynamin is involved in the production and/or movement of vesicles from an intracellular organelle to the cell surface to support membrane expansion around the engulfed particle.  相似文献   

2.
Dynamin plays a key role in the scission event common to various types of endocytosis. We demonstrate that the pleckstrin homology (PH) domain of dynamin-1 is critical in the process of rapid endocytosis (RE) in chromaffin cells. Introduction of this isolated PH domain into cells at concentrations as low as 1 microM completely suppressed RE. PH domains from other proteins, including that from the closely related dynamin-2, were ineffective as inhibitors, even at high concentrations. Mutational studies indicated that a pair of isoform-specific amino acids, located in a variable loop between the first two beta-strands, accounted for the differential effect of the two dynamin PH domains. Switching these amino acids in the dynamin-2 PH domain to the equivalent residues in dynamin-1 (SL-->GI) generated a molecule that blocked RE. Thus, the PH domain of dynamin-1 is essential for RE and exhibits a precise molecular selectivity. As chromaffin cells express both dynamin-1 and -2, we speculate that different isoforms of dynamin may regulate distinct endocytotic processes and that the PH domain contributes to this specificity.  相似文献   

3.
Exocytosis in neuroendocrine cells: new tasks for actin   总被引:1,自引:0,他引:1  
Most secretory cells undergoing calcium-regulated exocytosis in response to cell surface receptor stimulation display a dense subplasmalemmal actin network, which is remodeled during the exocytotic process. This review summarizes new insights into the role of the cortical actin cytoskeleton in exocytosis. Many earlier findings support the actin-physical-barrier model whereby transient depolymerization of cortical actin filaments permits vesicles to gain access to their appropriate docking and fusion sites at the plasma membrane. On the other hand, data from our laboratory and others now indicate that actin polymerization also plays a positive role in the exocytotic process. Here, we discuss the potential functions attributed to the actin cytoskeleton at each major step of the exocytotic process, including recruitment, docking and fusion of secretory granules with the plasma membrane. Moreover, we present actin-binding proteins, which are likely to link actin organization to calcium signals along the exocytotic pathway. The results cited in this review are derived primarily from investigations of the adrenal medullary chromaffin cell, a cell model that is since many years a source of information concerning the molecular machinery underlying exocytosis.  相似文献   

4.
Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis   总被引:2,自引:0,他引:2  
Earlier work by us as well as others has demonstrated that filamentous actin is mainly localized in the cortical surface of chromaffin cell. This F-actin network acts as a barrier to the chromaffin granules, impeding their contact with the plasma membrane. Chromaffin granules contain α-actinin, an anchorage protein that mediates F-actin association with these vesicles. Consequently, chromaffin granules crosslink and stabilize F-actin networks. Stimulation of chromaffin cell produces disassembly of F-actin and removal of the barrier. This interpretation is based on: (1) Cytochemical experiments with rhodamine-labeled phalloidin indicated that in resting chromaffin cells, the F-actin network is visualized as a strong cortical fluorescent ring; (2) Nicotinic receptor stimulation produced fragmentation of this fluorescent ring, leaving chromaffin cell cortical areas devoid of fluorescence; and (3) These changes are accompanied by a decrease in F-actin, a concomitant increase in G-actin, and a decrease in the F-actin associated with the chromaffin cell cytoskeleton (DNAse I assay). We also have demonstrated the presence in chromaffin cells of gelsolin and scinderin, two Ca2+-dependent actin filament-severing proteins, and suggested that chromaffin cell stimulation activates scinderin with the consequent disruption of F-actin networks. Scinderin, a protein recently isolated in our laboratory, is restricted to secretory cells and is present mainly in the cortical chromaffin cell cytoplasm. Scinderin, which is structurally different from gelsolin (different pIs, amino acid composition, peptide maps, and so on), decreases the viscosity of actin gels as a result of its F-actin-severing properties, as demonstrated by electron microscopy. Stimulation of chromaffin cells either by nicotine (10 μM) or high K+ (56 mM) produces a redistribution of subplasmalemmal scinderin and actin disassembly, which preceded exocytosis. The redistribution of scinderin and exocytosis is Ca2+-dependent and is not mediated by muscarinic receptors. Furthermore, our cytochemical experiments demonstrate that chromaffin cell stimulation produces a concomitant and similar redistribution of scinderin (fluorescein-labeled antibody) and F-actin (rhodamine phalloidin fluorescence), suggesting a functional interaction between these two proteins. Stimulation-induced redistribution of scinderin and F-actin disassembly would produce subplasmalemmal areas of decreased cytoplasmic viscosity and increased mobility for chromaffin granules. Exocytosis sites, evaluated by antidopamine-β-hydroxylase (anti-DβH) surface staining, are preferentially localized in plasma membrane areas devoid of F-actin.  相似文献   

5.
Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase-activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin.  相似文献   

6.
Classic calcium hypothesis states that depolarization-induced increase in intracellular Ca2+ concentration ([Ca2+]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca2+, in this calcium hypothesis, serves as a reservoir of Ca2+ source. Recently we find that extracellular Ca2+per se inhibits the [Ca2+]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca2+ or both [1]. In this work we showed that, in physiological condition, extracellular Ca2+per se specifically inhibited the quantal size of single vesicle release in rat adrenal slice chromaffin cells. The extracellular Ca2+ in physiological concentration (2.5 mM) directly regulated fusion pore kinetics of spontaneous quantal release of catecholamine. In addition, removal of extracellular Ca2+ directly triggered vesicle exocytosis without eliciting intracellular Ca2+. We propose that intracellular Ca2+ and extracellular Ca2+per se cooperately regulate single vesicle exocytosis. The vesicle release probability was jointly modulated by both intracellular and extracellular Ca2+, while the vesicle quantal size was mainly determined by extracellular Ca2+ in chromaffin cells physiologically.  相似文献   

7.
The major part of mast cell actin is Triton-soluble and behaves as a monomer in the DNase I inhibition assay. Thus, actin exists predominantly in monomeric or short filament form, through filamentous actin is clearly apparent in the cortical region after rhodamine-phalloidin (RP) staining. The minimum actin content is estimated to be approximately 2.5 micrograms/10(6) cells (cytosolic concentration approximately 110 microM. After permeabilization of mast cells by the bacterial cytolysin streptolysin-O, approximately 60% of the Triton-soluble actin leaks out within 10 min. However, the staining of the cortical region by RP remains undiminished, and the cells are still capable of exocytosis when stimulated by GTP-gamma-S together with Ca2+. In the presence of cytochalasin E the requirement for Ca2+ is decreased, indicating that disassembly of the cytoskeleton may be a prerequisite for exocytosis. This disassembly is likely to be controlled by Ca2(+)-dependent actin regulatory proteins; their presence is indicated by a Ca2(+)-dependent inhibition of polymerization of extraneous pyrene-G-actin by a Triton extract of mast cells. The effect of cytochalasin E on secretion is similar to that of phorbol myristate acetate, an activator of protein kinase C; both agents enhance the apparent affinity for Ca2+ and cause variable extents of Ca2(+)-independent secretion. Exposing the permeabilized cells to increasing concentrations of Ca2+ caused a progressive decrease in F-actin levels as measured by flow cytometry of RP-stained cells. In this respect, both cytochalasin E and phorbol ester mimicked the effects of calcium. GTP-gamma-S was not required for the Ca2(+)-dependent cortical disassembly. Thus, since conditions have not yet been identified where secretion can occur in its absence, cortical disassembly may be essential (though it is not sufficient) for exocytosis to occur.  相似文献   

8.
We previously identified two forms of endocytosis using capacitance measurements in chromaffin cells: rapid endocytosis (RE), dynamin-1 dependent but clathrin-independent and slow endocytosis (SE), dynamin-2 and clathrin-dependent. Various recombinant SH3 domains that interact with the proline-rich domain of dynamin were introduced into single cells via the patch pipette. GST-SH3 domains of amphiphysin-1, intersectin-IC, and endophilin-I inhibited SE but had no effect on RE. Grb2-SH3 (N-terminal) or a mutant of amphiphysin-1-SH3 was inactive on either process. These data confirm that dynamin-1 dependent RE is independent of clathrin and show that amphiphysin is exclusively associated with clathrin and dynamin-2-dependent SE.  相似文献   

9.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

10.
Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following cortical exocytosis in mouse eggs. For this purpose, we developed a pulse-chase assay to detect CG membrane internalization. Results showed internalized labeling in SrCl2-activated and fertilized eggs when chasing at 37°C, but not at a nonpermissive temperature (4°C). The use of kinase and calcineurin inhibitors led us to conclude that this internal labeling corresponded to CE. Further experiments showed that CE in mouse eggs is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine. Finally, CE was impaired in A23187 ionophore-activated eggs, highlighting once again the mechanistic differences between the activation methods. Altogether, these results demonstrate for the first time that egg activation triggers CE in mouse eggs after exocytosis of CG, probably as a plasma membrane homeostasis mechanism.  相似文献   

11.
Immunofluorescence and cytochemical studies have demonstrated that filamentous actin is mainly localized in the cortical surface of the chromaffin cell. It has been suggested that these actin filament networks act as a barrier to the secretory granules, impeding their contact with the plasma membrane. Stimulation of chromaffin cells produces a disassembly of actin filament networks, implying the removal of the barrier. The presence of gelsolin and scinderin, two Ca(2+)-dependent actin filament severing proteins, in the cortical surface of the chromaffin cells, suggests the possibility that cell stimulation brings about activation of one or more actin filament severing proteins with the consequent disruption of actin networks. Therefore, biochemical studies and fluorescence microscopy experiments with scinderin and gelsolin antibodies and rhodamine-phalloidin, a probe for filamentous actin, were performed in cultured chromaffin cells to study the distribution of scinderin, gelsolin, and filamentous actin during cell stimulation and to correlate the possible changes with catecholamine secretion. Here we report that during nicotinic stimulation or K(+)-evoked depolarization, subcortical scinderin but not gelsolin is redistributed and that this redistribution precedes catecholamine secretion. The rearrangement of scinderin in patches is mediated by nicotinic receptors. Cell stimulation produces similar patterns of distribution of scinderin and filamentous actin. However, after the removal of the stimulus, the recovery of scinderin cortical pattern of distribution is faster than F-actin reassembly, suggesting that scinderin is bound in the cortical region of the cell to a component other than F-actin. We also demonstrate that peripheral actin filament disassembly and subplasmalemmal scinderin redistribution are calcium-dependent events. Moreover, experiments with an antibody against dopamine-beta-hydroxylase suggest that exocytosis sites are preferentially localized to areas of F-actin disassembly.  相似文献   

12.
Neurons in the central nervous system establish, via their axons and dendrites, an extended network that allows synaptic transmission. During developmental maturation and process outgrowth, membrane turnover is necessary for the enlargement and subsequent growth of axons and dendrites from the perikarya to the target cell (constitutive exocytosis/endocytosis). After targeting and synapse formation, small synaptic vesicles are needed for the quantal release of neurotransmitters from the presynaptic terminal with subsequent recycling by regulated exocytosis/endocytosis. An investigation of the onset of the appearance of mRNA and protein in dissociated cultures of neurons from mouse hippocampus or from chick retina has shown an early abundance of proteins involved in exocytosis, such as syntaxin 1, SNAP-25, and synaptotagmin 1, whereas dynamin 1, a protein necessary for clathrin-mediated endocytosis, can be detected only after neurons have established contacts with neighboring cells. The results reveal that constitutive membrane incorporation and regulated synaptic transmitter release is mediated by the same neuronal proteins. Moreover, the data exclude that dynamin 1 takes part in constitutive recycling before synapse formation, but dynamin 2 is present at this stage. Thus, dynamin 2 may be the constitutive counterpart of dynamin 1 in growing neurons. Synapse establishment is linked to an upregulation of dynamin 1 and thereby represents the beginning of the regulated recycling of membranes back into the presynaptic terminal.  相似文献   

13.
Reorganisation of peripheral actin filaments as a prelude to exocytosis   总被引:18,自引:0,他引:18  
Evidence is presented, from studies on the adrenal chromaffin cell, that reorganisation of the cortical actin network is necessary to allow granules to reach exocytotic sites in stimulated cells. This reorganisation may involve changes in actin filament cross-linking, assembly and interactions with secretory granule and plasma membranes. The possibility is discussed that cytoskeletal elements including the membrane-binding proteins caldesmon, p70 and p36 may be involved in granule-plasmalemmal interactions immediately prior to exocytosis.  相似文献   

14.
As a final stage of cell signal transduction, secretory cells release hormones by exocytosis. Before secretory granules contact with the cell membrane for fusion, an actin-network barrier must dissociate as a prelude. To elucidate dynamical behaviors of secretory granules in actin networks, in vitro assembly and disassembly processes of actin networks were examined by means of dynamic light-scattering spectroscopy. We studied actin polymerization in the presence of chromaffin granules isolated from bovine adrenal medullas and found that the entanglement of actin filaments rapidly formed cages that confined granules in them. We also studied the effect of gelsolin, one of actin-severing proteins, on the network of actin filaments preformed in the presence of chromaffin granules. It turned out that the cages that confined granules rapidly disappeared when gelsolin was added in the presence of free Ca2+ ions. A semiquantitative analysis of dynamic light-scattering spectra permitted us to estimate the changes in the mobility (or the translational diffusion coefficient) of chromaffin granules in the actin network with its assembly and Ca(2+)-dependent disassembly by gelsolin. Based on the present results and some pieces of evidence in the literature, a model is proposed for biophysical situations before, during, and after an exocytotic event.  相似文献   

15.
Dynamin proteins have been implicated in many aspects of endocytosis, including clathrin-mediated endocytosis, internalization of caveolae, synaptic vesicle recycling, and, more recently, vesicular trafficking to and from the Golgi complex. To provide further insight into the function(s) of dynamin in neuroendocrine cells, we have examined its intracellular distribution in cultured chromaffin cells by subcellular fractionation, immunoreplica analysis, and confocal immunofluorescence. We found that dynamin, presumably the dynamin-2 isoform, is associated specifically with the membrane of purified secretory chromaffin granules. Oligomerization state analysis by sucrose density velocity gradients indicated that the granule-associated dynamin is in a monomeric form. Immunoprecipitation experiments coupled to double-labeling immunofluorescence cytochemistry revealed that the granular dynamin is associated with a syntaxin component that is not involved in the granule-bound SNARE complex. The possibility that dynamin participates in the coupling of the exocytotic and endocytotic reaction through the building of a granular membrane subset of proteins is discussed.  相似文献   

16.
The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.  相似文献   

17.
We have previously shown that Regulator of Calcineurin 1 (RCAN1) regulates multiple stages of vesicle exocytosis. However, the mechanisms by which RCAN1 affects secretory vesicle exocytosis and quantal release kinetics remain unknown. Here, we use carbon fibre amperometry to detect exocytosis from chromaffin cells and identify these underlying mechanisms. We observe reduced exocytosis with repeated stimulations in chromaffin cells over‐expressing RCAN1 (RCAN1ox), but not in wild‐type (WT) cells, indicating a negative effect of RCAN1 on vesicle recycling and endocytosis. Acute exposure to calcineurin inhibitors, cyclosporine A and FK‐506, replicates this effect in WT cells but has no additional effect in RCAN1ox cells. When we chronically expose WT cells to cyclosporine A and FK‐506 we find that catecholamine release per vesicle and pre‐spike foot (PSF) signal parameters are decreased, similar to that in RCAN1ox cells. Inhibiting calcineurin activity in RCAN1ox cells has no additional effect on the amount of catecholamine release per vesicle but further reduces PSF signal parameters. Although electron microscopy studies indicate these changes are not because of altered vesicle number or distribution in RCAN1ox cells, the smaller vesicle and dense core size we observe in RCAN1ox cells may underlie the reduced quantal release in these cells. Thus, our results indicate that RCAN1 most likely affects vesicle recycling and quantal release kinetics via the inhibition of calcineurin activity.  相似文献   

18.
Although the actin cytoskeleton has been implicated in vesicle trafficking, docking and fusion, its site of action and relation to the Ca(2+)-mediated activation of the docking and fusion machinery have not been elucidated. In this study, we examined the role of actin filaments in regulated exocytosis by introducing highly specific actin monomer- binding proteins, the beta-thymosins or a gelsolin fragment, into streptolysin O-permeabilized pancreatic acinar cells. These proteins had stimulatory and inhibitory effects. Low concentrations elicited rapid and robust exocytosis with a profile comparable to the initial phase of regulated exocytosis, but without raising [Ca2+], and even when [Ca2+] was clamped at low levels by EGTA. No additional cofactors were required. Direct visualization and quantitation of actin filaments showed that beta-thymosin, like agonists, induced actin depolymerization at the apical membrane where exocytosis occurs. Blocking actin depolymerization by phalloidin or neutralizing beta- thymosin by complexing with exogenous actin prevented exocytosis. These findings show that the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis. In addition, actin filaments also have a positive role. High concentrations of the actin depolymerizing proteins inhibited all phases of exocytosis. The inhibition overrides stimulation by agonists and all downstream effectors tested, suggesting that exocytosis cannot occur without a minimal actin cytoskeletal structure.  相似文献   

19.
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.  相似文献   

20.
Total internal reflection fluorescence microscopy (TIRFM) images the plasma membrane–cytosol interface and has allowed insights into the behavior of individual secretory granules before and during exocytosis. Much less is known about the dynamics of the other partner in exocytosis, the plasma membrane. In this study, we report the implementation of a TIRFM-based polarization technique to detect rapid submicrometer changes in plasma membrane topology as a result of exocytosis. A theoretical analysis of the technique is presented together with image simulations of predicted topologies of the postfusion granule membrane–plasma membrane complex. Experiments on diI-stained bovine adrenal chromaffin cells using polarized TIRFM demonstrate rapid and varied submicrometer changes in plasma membrane topology at sites of exocytosis that occur immediately upon fusion. We provide direct evidence for a persistent curvature in the exocytotic region that is altered by inhibition of dynamin guanosine triphosphatase activity and is temporally distinct from endocytosis measured by VMAT2-pHluorin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号