首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During metamorphosis, holometabolous insects eliminate obsolete larval tissues via programmed cell death. In contrast, tissues required for further development are retained and often remodeled to meet the needs of the adult fly. The larval fat body is involved in fueling metamorphosis, and thus it escapes cell death and is instead remodeled during prepupal development. The molecular mechanisms by which the fat body escapes programmed cell death have not yet been described, but it has been established that fat-body remodeling requires 20-hydroxyecdysone (20E) signaling. We have determined that 20E signaling is required within the fat body for the cell-shape changes and cell detachment that are characteristic of fat-body remodeling. We demonstrate that the nuclear hormone receptor ßFTZ-F1 is a key modulator of 20E hormonal induction of fat body remodeling and Matrix metalloproteinase 2 (MMP2) expression in the fat body. We show that induction of MMP2 expression in the fat body requires 20E signaling, and that MMP2 is necessary and sufficient to induce fat-body remodeling.  相似文献   

2.
Matrix metalloproteinases belong to a family of enzymes that degrade the extracellular matrix (ECM) components and play an important role in tissue repair, tumor invasion, and metastasis. ECM proteins, cytokines, and certain other factors regulate MMP activity. OPN, an ECM protein, has been found to be overexpressed in various cancers, and it has been shown to correlate with the metastatic potential. Although such reports indicate that OPN plays an important role in the ability of tumor cells to survive and metastasize to secondary sites, the mechanism by which OPN regulates these processes is yet to be understood. In this study we report that native purified human OPN can induce cell migration and ECM invasion. Increased invasiveness and migration correlates with enhanced expression and activation of MMP-2. Our study provides evidence showing that OPN increases gelatinolytic activity by inducing MT1-MMP expression via activation of the NF-B pathway. Suppression of MMP-2 by ASMMP-2 reduces the OPN-induced cell migration and ECM invasion. Curcumin blocks OPN-induced MT1-MMP expression and pro-MMP-2 activation. Curcumin, a known anti-inflammatory and anticarcinogenic compound, suppresses OPN-induced cell migration, invasion and induces apoptotic morphology in OPN-treated cells. The mechanism by which curcumin suppresses the OPN-induced effects has also been delineated. Curcumin inhibits MT1-MMP gene expression by blocking signals leading to IKK activation. This in turn inhibits IB phosphorylation and NF-B activation. Published in 2004.  相似文献   

3.
4.
5.
The mammary gland is an organ that at once gives life to the young, but at the same time poses one of the greatest threats to the mother. Understanding how the tissue develops and functions is of pressing importance in determining how its control mechanisms break down in breast cancer. Here we argue that the interactions between mammary epithelial cells and their extracellular matrix (ECM) are crucial in the development and function of the tissue. Current strategies for treating breast cancer take advantage of our knowledge of the endocrine regulation of breast development, and the emerging role of stromal–epithelial interactions (Fig. 1). Focusing, in addition, on the microenvironmental influences that arise from cell–matrix interactions will open new opportunities for therapeutic intervention. We suggest that ultimately a three-pronged approach targeting endocrine, growth factor, and cell-matrix interactions will provide the best chance of curing the disease.Cellular interactions with the ECM are one of the defining features of metazoans (Huxley-Jones et al. 2007). Matrix proteins are among the most abundant in the body, and are integral components of cell regulation and developmental programs operating in all tissues. They provide structure and support to tissues, and they interact with cells through diverse receptors to guide development, patterning, and cell fate decisions (Streuli 2009). Together with cytokines and growth factors, and cell–cell interactions, the ECM determines whether cells survive, proliferate, differentiate, or migrate, and it influences cell shape and polarity (Streuli and Akhtar 2009). Cell–ECM interactions also are central in the assembly of the matrix itself, and in determining ECM organization and rigidity (Kadler et al. 2008; Kass et al. 2007). The cell–matrix interface is therefore pivotal in controlling both cell function and tissue structure, which together build organs into operational structures. Thus, elucidating precisely how the matrix directs cell phenotype is crucial for understanding mechanisms of development and disease.Mammary gland tissue contains epithelium and stroma ((Fig.Fig. 2). Mammary epithelial cells (MEC) form collecting ducts and, in pregnancy and lactation, milk-secreting alveoli (or lobules). The mammary epithelium is bilayered, with the inner luminal cells facing a central apical cavity and surrounded by the outer basal, myoepithelial cells. It also harbors stem and progenitor cells, which are the source of both luminal and myoepithelial cells (Visvader 2009). The epithelium is ensheathed by one of the main types of ECM, basement membrane (BM), which separates epithelium from stroma, and profoundly influences the development and biology of the gland (Streuli 2003). The stroma includes fibrous connective tissue ECM proteins, and a wide variety of cell types, including inter- and intralobular fibroblasts, adipocytes, endothelial cells, and innate immune cells (both macrophages and mast cells). The stroma is the support network for the epithelium, providing both nutrients and blood supply, and immune defenses, as well as physical structure to the gland. Importantly, each of the different stromal cell types secrete instructive signals that are crucial for various aspects of the development and function of the epithelium (Sternlicht 2006).Open in a separate windowFigure 1.Mammary gland development. Whole mounts of (A) virgin and (B) mid-pregnant mouse mammary gland. The thin, branched epithelial ducts that are characteristic of nonpregnant gland undergo dramatic alterations in pregnancy, when new types of epithelial structures, the milk-producing alveoli, emerge. The huge amount of proliferation that accompanies this change occurs in a discrete and controlled fashion. The formation of ducts and alveoli is under three types of environmental control. The first is long-range endocrine hormones, which includes estrogen, progesterone, glucocorticoids, and prolactin. The second is locally acting growth factors, which arise from stromal–epithelial conversation, and includes amphiregulin, FGF, HGF, and IGF. Finally, microenvironmental adhesive signals from adjacent cells (e.g., via cadherins) and from the ECM (e.g., integrin) have an equally central role in all aspects of mammary development and function. Importantly, the proliferation that occurs in breast cancer is not well controlled, indicating not only defects in growth signaling, but also in cellular organization. Chronologically, breast cancer drugs were initially developed against endocrine regulators, e.g., estrogen, and more recently against the stromal/epithelial regulators, e.g., receptor tyrosine kinases. A complete control of the disease will only happen when therapies targeting the microenvironmental adhesion breast regulators, e.g., cell–matrix interactions, are formulated, and used in combination.Open in a separate windowFigure 2.Ducts and alveoli in early pregnancy. Transverse section of ducts surrounded by a thick layer of collagenous (stromal) connective tissue containing fibroblasts and the fat pad. Also visible are small alveoli, which fill the fat pad by the time the gland lactates, but note that they are not surrounded collagen. A capillary is evident, and macrophages and mast cells are also present, though they require specific staining to visualize. A basement membrane is present directly at the basal surface of both ductal and alveolar epithelium (see Fig. 3).BMs surround three cell types in the mammary gland: the epithelium, the endothelium of the vasculature, and adipocytes (Fig. 3). These ECMs are thin, ∼100-nm thick sheets of glycoproteins and proteoglycans, which are constructed around an assembled polymer of laminins and a cross-linked network of collagen IV fibrils (Yurchenco and Patton 2009). Laminins form αβγ trimers, and in the breast at least four distinct isoforms are present: laminin-111, -322, and -511 and -521 (previously known as LM-1, 5, 10, and 11) (Aumailley et al. 2005; Prince et al. 2002). Similarly, BM proteoglycans are diverse and show complexity in their GAG chain modifications that vary with development of the mammary gland, though the major species is perlecan (Delehedde et al. 2001). BM proteins interact with MEC via integrins and transmembrane proteoglycans dystroglycan and syndecan, which all couple to the cytoskeleton and assemble signaling platforms to control cell fate (Barresi and Campbell 2006; Morgan et al. 2007). The best-studied MEC BM receptors are integrins, which are αβ heterodimers: they include receptors for collagen (α1β1 and α2β1), LM-111, -511, -521 (α3β1, α6β1, and α6β4), LM-322 (α3β1 and α6β4), and in some MECs fibronectin and vitronectin (α5β1 and β3 integrins) (Naylor and Streuli 2006). BM proteoglycans have a further signaling role via their capacity to bind growth factors and cytokines: They act both as a reservoir and a delivery vehicle to GF receptors, thereby controlling the passage of GFs across the BM (Iozzo 2005). Because of these diverse roles, the BM is a dominant regulator of the mammary epithelial phenotype.Open in a separate windowFigure 3.Alveolar and ductal architecture of breast epithelia shown through fluorescence and histological images. (A) An alveolus from a lactating mammary gland, showing luminal epithelial cells with cell–cell adhesion junctions (green, E-cadherin) and cell–matrix interactions (red, laminin-111). The central lumen is where milk collects. (B) The duct of a nonpregnant gland is stained with an antibody to laminin (brown) and counterstained with hematoxylin. Note that the laminin-containing basement membrane surrounds the ductal epithelial cells, and outside this lie collagenous connective tissue and adipocytes. Figure B courtesy of Dr. Rama Khokha.Apart from the endothelium and adipocytes, which contact BMs, the mammary stromal cells are mostly solitary and embedded within a fibrous ECM. Stromal matrix components include collagens type I and III, proteoglycans and hyaluronic acid, fibronectin and tenascins, and the composition varies with development and pregnancy (Schedin et al. 2004). Not a great deal is known about the specific interactions between breast stromal cells and their ECM, or how the matrix composition and density determines stromal cell function. However, it is becoming evident that the stromal matrix exerts a powerful influence on malignant breast epithelial cells, which invade the stroma and are further transformed by exposure to this distinct microenvironment (Kumar and Weaver 2009; Streuli 2006).In this article we focus on cell–matrix interactions within mammary epithelium, and reveal known and possible mechanisms for its control on ductal development, alveolar function, and cancer progression.  相似文献   

6.
Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed ‘form invariant’ assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.  相似文献   

7.
Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-β1, which involved the extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-β1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis.  相似文献   

8.
9.
In previous research, we found α-enolase to be inversely correlated with progression-free and overall survival in lung cancer patients and detected α-enolase on the surface of lung cancer cells. Based on these findings, we hypothesized that surface α-enolase has a significant role in cancer metastasis and tested this hypothesis in the current study. We found that α-enolase was co-immunoprecipitated with urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor, and plasminogen in lung cancer cells and interacted with these proteins in a cell-free dot blotting assay, which can be interrupted by α-enolase-specific antibody. α-Enolase in lung cancer cells co-localized with these proteins and was present at the site of pericellular degradation of extracellular matrix components. Treatment with antibody against α-enolase in vitro suppressed cell-associated plasminogen and matrix metalloproteinase activation, collagen and gelatin degradation, and cell invasion. Examination of the effect of treatment with shRNA plasmids revealed that down regulation of α-enolase decreases extracellular matrix degradation by and the invasion capacity of lung cancer cells. Adoptive transfer of α-enolase-specific antibody to mice resulted in accumulation of antibody in subcutaneous tumor and inhibited the formation of tumor metastasis in lung and bone. This study demonstrated that surface α-enolase promotes extracellular matrix degradation and invasion of cancer cells and that targeting surface α-enolase is a promising approach to suppress tumor metastasis.  相似文献   

10.
Y Jiao  X Feng  Y Zhan  R Wang  S Zheng  W Liu  X Zeng 《PloS one》2012,7(7):e41591

Background

Matrix metalloproteinase-2 (MMP-2) is a key regulator in the migration of tumor cells. αvβ3 integrin has been reported to play a critical role in cell adhesion and regulate the migration of tumor cells by promoting MMP-2 activation. However, little is known about the effects of MMP-2 on αvβ3 integrin activity and αvβ3 integrin-mediated adhesion and migration of tumor cells.

Methodology/Principal Findings

Human melanoma cells were seeded using an agarose drop model and/or subjected to in vitro analysis using immunofluorescence, adhesion, migration and invasion assays to investigate the relationship between active MMP-2 and αvβ3 integrin during the adhesion and migration of the tumor cells. We found that MMP-2 was localized at the leading edge of spreading cells before αvβ3 integrin. αvβ3 integrin-mediated adhesion and migration of the tumor cells were inhibited by a MMP-2 inhibitor. MMP-2 cleaved fibronectin into small fragments, which promoted the adhesion and migration of the tumor cells.

Conclusion/Significance

MMP-2 cleaves fibronectin into small fragments to enhance the adhesion and migration of human melanoma cells mediated by αvβ3 integrin. These results indicate that MMP-2 may guide the direction of the tumor cell migration.  相似文献   

11.
12.
Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a severe deficiency in the activity of the branched-chain α-keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Infections have a significant role in precipitating acute metabolic decompensation in patients with MSUD; however, the mechanisms underlying the neurotoxicity in this disorder are poorly understood. In this study, we subjected rats to the coadministration of lipopolysaccharide (LPS), which is a major component of gram-negative bacteria cell walls, and high concentrations of BCAA (H-BCAA) to determine their effects on the permeability of the blood–brain barrier (BBB) and on the levels of matrix metalloproteinases (MMP-2 and MMP-9). Our results demonstrated that the coadministration of H-BCAA and LPS causes breakdown of the BBB and increases the levels of MMP-2 and MMP-9 in the hippocampus of these rats. On the other hand, examination of the cerebral cortex of the 10- and 30-day-old rats revealed a significant difference in Evan’s Blue content after coadministration of H-BCAA and LPS, as MMP-9 levels only increased in the cerebral cortex of the 10-day-old rats. In conclusion, these results suggest that the inflammatory process associated with high levels of BCAA causes BBB breakdown. Thus, we suggest that BBB breakdown is relevant to the perpetuation of brain inflammation and may be related to the brain dysfunction observed in MSUD patients.  相似文献   

13.
Interleukin-1 (IL-1) induces extracellular matrix degradation as a result of increased expression of matrix metalloproteinases (MMPs). We examined adhesion-restricted signaling pathways that enable IL-1-induced MMP release in human gingival and murine fibroblasts. Of the seven MMPs and three tissue inhibitors of MMPs screened, IL-1 enhanced release only of MMP3 when cells formed focal adhesions. Inhibition of protein-tyrosine phosphatases (PTPs), which are enriched in focal adhesions, blocked IL-1-induced MMP3 release. Accordingly, in contrast to wild-type cells, fibroblasts null for PTPα did not exhibit IL-1-induced MMP3 release. IL-1 treatment enhanced the recruitment of SHP-2 and PTPα to focal adhesions and the association of PTPα with SHP-2. Pulldown assays confirmed a direct interaction between PTPα and SHP-2, which was dependent on the intact, membrane-proximal phosphatase domain of PTPα. Interactions between SHP-2 and PTPα, recruitment of SHP-2 to focal adhesions, IL-1-induced ERK activation, and MMP3 expression were all blocked by point mutations in the phosphatase domains of PTPα. These data indicate that IL-1-induced signaling through focal adhesions leading to MMP3 release and interactions between SHP-2 and PTPα are dependent on the integrity of the catalytic domains of PTPα.  相似文献   

14.
Multiple sclerosis is a neurodegenerative disease characterized by the present of leukocytes in the brain tissue and subsequently the formation of sclerotic plaques. Leukocytes penetration into the blood–brain barrier is related to several factors, such as, the conversion of leukocyte gene expression or plasma characteristics. In this frame, we explore alteration of matrix metalloproteinase-2 (MMP-2), transforming growth factor beta (TGF-β) family, and Claudin-11 (as a main myelin structural protein) in leukocytes and blood plasma of multiple sclerosis patients compared to the normal group. Blood samples were collected from thirteen men affected by MS and fifteen healthy men. Leukocyte gene expression was measured using real-time PCR and plasma parameters were examined by ELISA. The results of this study showed that the gene expression of Claudin-11 was significantly higher in MS group compared with normal. Interestingly, the MMP-2 pattern was similar to Claudin-11 and correlated positively with it. It was observed that, although the expressions of TGF-β1 and TGF-β2 are down-regulated in the leukocytes of subjects with MS, they showed higher levels of these cytokines in blood plasma. The plasma level of TGF-β3 in MS patients was higher than normal and correlated with Claudin-11 concentration. In conclusion, the aberrant pattern of Claudin-11, TGF-βs family, and MMP-2 expression in leukocytes of the MS patients was observed in this study. Moreover, the plasma levels of TGF-βs family increased in the MS group. The findings of this study provide clues for further investigations to assay MS pathogenesis.  相似文献   

15.
Cell migration during wound healing is a complex process that involves the expression of a number of growth factors and cytokines. One of these factors, transforming growth factor-beta (TGFβ) controls many aspects of normal and pathological cell behavior. It induces migration of keratinocytes in wounded skin and of epithelial cells in damaged cornea. Furthermore, this TGFβ-induced cell migration is correlated with the production of components of the extracellular matrix (ECM) proteins and expression of integrins and matrix metalloproteinases (MMPs). MMP digests ECMs and integrins during cell migration, but the mechanisms regulating their expression and the consequences of their induction remain unclear. It has been suggested that MMP-14 activates cellular signaling processes involved in the expression of MMPs and other molecules associated with cell migration. Because of the manifold effects of MMP-14, it is important to understand the roles of MMP-14 not only the cleavage of ECM but also in the activation of signaling pathways.Key words: wound healing, migration, matrix metalloproteinase, transforming growth factor, skin, corneaWound healing is a well-ordered but complex process involving many cellular activities including inflammation, growth factor or cytokine secretion, cell migration and proliferation. Migration of skin keratinocytes and corneal epithelial cells requires the coordinated expression of various growth factors such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), small GTPases, and macrophage stimulating protein (reviewed in refs. 1 and 2). The epithelial cells in turn regulate the expression of matrix metalloproteinases (MMPs), extracellular matrix (ECM) proteins and integrins during cell migration.1,3,4 TGF-β is a well-known cytokine involved in processes such as cell growth inhibition, embryogenesis, morphogenesis, tumorigenesis, differentiation, wound healing, senescence and apoptosis (reviewed in refs. 5 and 6). It is also one of the most important cytokines responsible for promoting the migration of skin keratinocytes and corneal epithelial cells.3,6,7TGFβ has two quite different effects on skin keratinocytes: it suppresses their multiplication and promotes their migration. The TGFβ-induced cell growth inhibition is usually mediated by Smad signaling, which upregulates expression of the cell cycle inhibitor p21WAF1/Cip1 or p12CDK2-AP1 in HaCaT skin keratinocyte cells and human primary foreskin keratinocytes.8,9 Keratinocyte migration in wounded skin is associated with strong expression of TGFβ and MMPs,1 and TGFβ stimulates the migration of manually scratched wounded HaCaT cells.10 TGFβ also induces cell migration and inhibits proliferation of injured corneal epithelial cells, whereas it stimulates proliferation of normal corneal epithelial cells via effects on the MAPK family and Smad signaling.2,7 Indeed, skin keratinocytes and corneal epithelial cells display the same two physiological responses to TGFβ during wound healing; cell migration and growth inhibition. However as mentioned above, TGFβ has a different effect on normal cells. For example, it induces the epithelial to mesenchymal transition (EMT) of normal mammary cells and lens epithelial cells.11,12 It also promotes the differentiation of corneal epithelial cells, and induces the fibrosis of various tissues.2,6The MMPs are a family of structurally related zinc-dependent endopeptidases that are secreted into the extracellular environment.13 Members of the MMP family have been classified into gelatinases, stromelysins, collagenases and membrane type-MMPs (MT-MMPs) depending on their substrate specificity and structural properties. Like TGFβ, MMPs influence normal physiological processes including wound healing, tissue remodeling, angiogenesis and embryonic development, as well as pathological conditions such as rheumatoid arthritis, atherosclerosis and tumor invasion.13,14The expression patterns of MMPs during skin and cornea wound healing are well studied. In rats, MMP-2, -3, -9, -11, -13 and -14 are expressed,15 and in mice, MMP-1, -2, -3, -9, -10 and -14 are expressed during skin wound healing.1 MMP-1, -3, -7 and -12 are increased in corneal epithelial cells during Wnt 7a-induced rat cornea wound healing.16 Wound repair after excimer laser keratectomy is characterized by increased expression of MMP-1, -2, -3 and -9 in the rabbit cornea, and MMP-2, -9 in the rat cornea.17,18 The expression of MMP-2 and -9 during skin keratinocyte and corneal epithelial cell migration has been the most thoroughly investigated, and it has been shown that their expression generally depends on the activity of MMP-14. MMP-14 (MT1-MMP) is constitutively anchored to the cell membrane; it activates other MMPs such as MMP-2, and also cleaves various types of ECM molecules including collagens, laminins, fibronectin as well as its ligands, the integrins.13 The latent forms of some cytokines are also cleaved and activated by MMP-14.19 Overexpression of MMP-14 protein was found to stimulate HT1080 human fibrosarcoma cell migration.20 In contrast, the attenuation of MMP-14 expression using siRNA method decreased fibroblast invasiveness,21 angiogenesis of human microvascular endothelial cells,22 and human skin keratinocyte migration.10 The latter effect was shown to result from lowering MMP-9 expression. Other studies have shown that EGF has a critical role in MMP-9 expression during keratinocyte tumorigenesis and migration.23,24 On the other hand, TGFβ modulates MMP-9 production through the Ras/MAPK pathway in transformed mouse keratinocytes and NFκB induces cell migration by binding to the MMP-9 promoter in human skin primary cultures.25,26 Enhanced levels of pro-MMP-9 and active MMP-9 have also been noted in scratched corneal epithelia of diabetic rats.27There is evidence that MMP-14 activates a number of intracellular signaling pathways including the MAPK family pathway, focal adhesion kinase (FAK), Src family, Rac and CD44, during cell migration and tumor invasion.19,20,28 In COS-7 cells, ERK activation is stimulated by overexpression of MMP-14 and is essential for cell migration.29 These observations all indicate that MMP-14 plays an important role in cell migration, not only by regulating the activity or expression of downstream MMPs but also by processing and activating migration-associated molecules such as integrins, ECMs and a variety of intracellular signaling pathays.30Cell migration during wound healing is a remarkably complex phenomenon. TGFβ is just one small component of the overall process of wound healing and yet it triggers a multitude of reactions needed for cell migration. It is important to know what kinds of molecules are expressed when cell migration is initiated, but it is equally important to investigate the roles of these molecules and how their expression is regulated. Despite the availability of some information about how MMPs and signaling molecules can influence each other, much remains to be discovered in this area. It will be especially important to clarify how MMP-14 influences other signaling pathways since its role in cell migration is not restricted to digesting ECM molecules but also includes direct or indirect activation of cellular signaling pathways.  相似文献   

16.
The pathological hallmarks of Alzheimer’s disease (AD) include formation of extracellular amyloid-β peptide (Aβ) and inflammatory responses. Numerous studies have reported that cerebral microvascular Aβ deposition promotes neuroinflammation in AD. Matrix metalloproteinases (MMPs) are involved in the cleavage of extracellular matrix proteins and regulation of growth factors, receptors, and adhesion molecules. Relatively little is known about the involvement of MMPs as inflammatory mediators in the pathological processes of AD. In this study, we explored the signaling pathway of MMP-2 up-regulation by Aβ in brain endothelial cells (BECs) of mice. Using Western blots, we found that inhibitors of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) significantly decreased Aβ-induced MMP-2 expression in BECs. Furthermore, antibody neutralization of the receptor for advanced glycation endproducts effectively blocked Aβ-induced activation of ERK and JNK and their contribution to elevated MMP-2 expression in BECs. Our results suggest that increased MMP-2 expression induced by the interaction of Aβ with RAGE in BECs may contribute to enhanced vascular inflammatory stress in Aβ-related vascular disorders, such as cerebral amyloid angiopathy and AD. This study offers new insights into neuroinflammation in the progression of AD.  相似文献   

17.
Proteins from pliable cuticle of locusts, Schistocerca gregaria, and silk moth larvae, Hyalophora cecropia, were studied in solution by means of a fluorescent probe, 8-anilinonaphthalene-1-sulphonic acid (ANS), which is much more fluorescent in non-polar media than in polar media. An intense ANS-fluorescence was observed in the presence of the cuticular proteins at pH-values close to their acidic isoelectric points, and the fluorescence decreased markedly when pH was increased to neutrality or when small amounts of denaturants were added. Aggregation and eventual precipitation of both H. cecropia and locust proteins were obtained by addition of neutral salts, and the aggregation was accompanied by an increased ANS-fluorescence intensity. A decreased ANS-fluorescence was observed at salt concentrations too low to cause visible aggregation of the H. cecropia proteins, probably due to weakened electrostatic interactions between chain segments, but such a decrease was not observed for the locust proteins. The changes in intensity of ANS-fluorescence induced by addition of small amounts of denaturants or salts to solutions of the proteins indicate that more hydrophobic residues are exposed to the solvent, when either hydrophobic interactions or electrostatic attractions between chain segments are weakened. The result is a less compact protein structure, where fewer and smaller hydrophobic clusters are available for protecting ANS-molecules from the quenching effects of water. The effects of denaturants on ANS-fluorescence in the presence of the cuticular proteins are different from those observed for globular proteins, such as hen egg albumen, and the differences can be explained by the suggestion that the cuticular proteins do not have a precisely folded and densely packed hydrophobic core comparable to that present in native globular proteins, and that accordingly they do not undergo a process of denaturation corresponding to that of globular proteins. The behaviour of the cuticular proteins resembles that described for unordered, randomly coiled, thermally agitated polymer chains, whose hydrodynamic volumes depend upon the composition of the medium. It is proposed that the major part of the peptide chains of the cuticular proteins are in an unordered, random structure both when the proteins are in solution and when present in the intact cuticle; probably only the chain regions involved in binding the proteins to chitin will have a well-defined spatial organisation.  相似文献   

18.
Bacterial biofilms are surface-attached microbial communities encased in self-produced extracellular polymeric substances. Here we demonstrate that during the development of Bacillus subtilis biofilms, matrix production is localized to an annular front propagating at the periphery and sporulation to a second front at a fixed distance at the interior. We show that within these fronts, cells switch off matrix production and transition to sporulation after a set time delay of ~100 min. Correlation analyses of fluctuations in fluorescence reporter activity reveal that the fronts emerge from a pair of gene-expression waves of matrix production and sporulation. The localized expression waves travel across cells that are immobilized in the biofilm matrix in contrast to active cell migration or horizontal colony spreading. Our results suggest that front propagation arises via a local developmental program occurring at the level of individual bacterial cells, likely driven by nutrient depletion and metabolic by-product accumulation. A single-length scale and timescale couples the spatiotemporal propagation of both fronts throughout development. As a result, gene expression patterns within the advancing fronts collapse to self-similar expression profiles. Our findings highlight the key role of the localized cellular developmental program associated with the propagating front in describing biofilm growth.  相似文献   

19.
The transforming growth factor-β (TGF-β) signaling pathway is often misregulated during cancer progression. In early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inhibiting proliferation and inducing apoptosis. However, as the disease progresses, TGF-β switches to promote tumorigenic cell functions, such as epithelial-mesenchymal transition (EMT) and increased cell motility. Dramatic changes in the cellular microenvironment are also correlated with tumor progression, including an increase in tissue stiffness. However, it is unknown whether these changes in tissue stiffness can regulate the effects of TGF-β. To this end, we examined normal murine mammary gland cells and Madin-Darby canine kidney epithelial cells cultured on polyacrylamide gels with varying rigidity and treated with TGF-β1. Varying matrix rigidity switched the functional response to TGF-β1. Decreasing rigidity increased TGF-β1-induced apoptosis, whereas increasing rigidity resulted in EMT. Matrix rigidity did not change Smad signaling, but instead regulated the PI3K/Akt signaling pathway. Direct genetic and pharmacologic manipulations further demonstrated a role for PI3K/Akt signaling in the apoptotic and EMT responses. These findings demonstrate that matrix rigidity regulates a previously undescribed switch in TGF-β-induced cell functions and provide insight into how changes in tissue mechanics during disease might contribute to the cellular response to TGF-β.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号