首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundBiomechanical models are a useful tool to estimate tendon tensions. Unfortunately, in previous fingers' models, each finger acts independently from the others. This is contradictory with hand motor control theories which show that fingers are functionally linked in order to balance the wrist/forearm joint with minimal tendon tensions. (i.e. principle of minimization of the secondary moments). We propose to adapt a hand biomechanical model according to this principle by including the wrist joint. We will determine whether the finger tendon tensions changed with the wrist joint added to the model.MethodsTwo models have been tested: one considering fingers independently (model A) and one with the fingers mechanically linked by the inclusion of the wrist balance (model B). A single set of data, additional results from the literature and in-vivo values have been used to compare the results.ResultsModel A corroborates previous results in the literature. Contrast results were obtained with model B, especially for the Ring and Little fingers. Different tendon tensions were obtained, particularly, in finger extensor muscles critical to balance the wrist.DiscussionWe discuss the biomechanical results in accordance with the hand/finger motor control theories. It appears that the wrist joint balance is critical for finger tendon tension estimation. When including the wrist joint into finger models, the tendon tension estimations agree well with the minimization of secondary moments and the force deficit.  相似文献   

2.
A geometric musculoskeletal model of the elbow and wrist joints was developed to calculate muscle moment arms throughout elbow flexion/extension, forearm pronation/supination, wrist flexion/extension and radial/ulnar deviation. Model moment arms were verified with data from cadaver specimen studies and geometric models available in the literature. Coefficients of polynomial equations were calculated for all moment arms as functions of joint angle, with special consideration to coupled muscles as a function of two joint angles. Additionally, a “normalized potential moment (NPM)” contribution index for each muscle across the elbow and wrist joints in four degrees-of-freedom was determined using each muscle's normalized physiological cross-sectional area (PCSA) and peak moment arm (MA). We hypothesize that (a) a geometric model of the elbow and wrist joints can represent the major attributes of MA versus joint angle from many literature sources of cadaver and model data and (b) an index can represent each muscle's normalized moment contribution to each degree-of-freedom at the elbow and wrist. We believe these data serve as a simple, yet comprehensive, reference for how the primary 16 muscles across the elbow and wrist contribute to joint moment and overall joint performance.  相似文献   

3.
The purpose of this investigation was to determine whether the passive range of motion at the finger joints is restricted more by intrinsic tissues (cross a single joint) or by extrinsic tissues (cross multiple joints). The passive moment at the metacarpophalangeal (MP) joint of the index finger was modeled as the sum of intrinsic and extrinsic components. The intrinsic component was modeled only as a function of MP joint angle. The extrinsic component was modeled as a function of MP joint angle and wrist angle. With the wrist fixed in seven different positions the passive moment at the MP joint of eight subjects was recorded as the finger was rotated through its range at a constant rate. The moment-angle data were fit by the model and the extrinsic and intrinsic components were calculated for a range of MP joint angles and wrist positions. With the MP joint near its extension limit, the median percent extrinsic contribution was 94% with the wrist extended 60° and 14% with the wrist flexed 60°. These percentages were 40 and 88%, respectively, with the MP joint near its flexion limit. Our findings indicate that at most wrist angles the extrinsic tissues offer greater restraint at the limits of MP joint extension and flexion than the intrinsic tissues. The intrinsic tissues predominate when the wrist is flexed or extended enough to slacken the extrinsic tissues. Additional characteristics of intrinsic and extrinsic tissues can be deduced by examining the parameter values calculated by the model.  相似文献   

4.
A four-corner arthrodesis of the wrist is a salvage procedure for the treatment of specific wrist disorders, to achieve a movable, stable and pain free joint. However, a partial arthrodesis limits the postoperative range of motion (ROM). The goal of this study is to understand the mechanism of the reduction of the ROM and to evaluate the effect of the orientation of the lunate in the four-corner arthrodesis on the range of motion by using a biomechanical model, containing articular contacts and ligaments. Multi-body models of a normal wrist and a four-corner arthrodesis wrist with different orientation of the lunate were used for simulations of flexion-extension motion (FEM) and radial-ulnar deviation motion (RUD). The ROM of the postoperative wrist was reduced from 145° to 82° of the total arc of FEM and from 73° to 41.5° of the total arc of RUD. The model simulations show that the range of motion reduction is caused by overtension of the extrinsic wrist ligaments. Different positioning of the lunate changes the balance between the contact forces and ligament forces in the wrist. This explains the effect on the postoperative range of motion. The 20° flexed lunate did not give any gain in the extension motion of the wrist, caused joint luxation in flexion and limitation in RUD. The 30° extended lunate caused overtension of the extrinsic ligaments attached to the lunate. The ROM in this case is dramatically reduced. The model simulations suggest that the neutral position of the lunate seems to be most favorable for mobility of the wrist after a four-corner arthrodesis procedure.  相似文献   

5.
The aim of this study was to explore the electromyographic, kinetic and kinematic patterns during a partially restricted sit-to-stand task in subjects with and without Parkinson’s disease (PD). If the trunk is partially restricted, different behavior of torques and muscle activities could be found and it can serve as a reference of the deterioration in the motor performance of subjects with PD. Fifteen subjects participated in this study and electromyography (EMG) activity of the tibialis anterior (TA), soleus (SO), vastus medialis oblique (VMO), biceps femoris (BF) and erector spinae (ES) were recorded and biomechanical variables were calculated during four phases of the movement. Subjects with PD showed more flexion at the ankle, knee and hip joints and increased knee and hip joint torques in comparison to healthy subjects in the final position. However, these joint torques can be explained by the differences in kinematic data. Also, the hip, knee and ankle joint torques were not different in the acceleration phase of movement. The use of a partially restricted sit-to-stand task in PD subjects with moderate involvement leads to the generation of joint torques similar to healthy subjects. This may have important implications for rehabilitation training in PD subjects.  相似文献   

6.
Measurements of in-vitro carpal kinematics of the wrist provide valuable biomechanical data. Tendon loading is often applied during cadaver experiments to simulate natural stabilizing joint compression in the wrist joint. The purpose of this study was to investigate the effect of tendon loading on carpal kinematics in-vitro.A cyclic movement was imposed on 7 cadaveric forearms while the carpal kinematics were acquired by a 4-dimensional rotational X-ray imaging system. The extensor- and flexor tendons were loaded with constant force springs of 50 N, respectively. The measurements were repeated without a load on the tendons. The effect of loading on the kinematics was tested statistically by using a linear mixed model.During flexion and extension, the proximal carpal bones were more extended with tendon loading. The lunate was on the average 2.0° (p=0.012) more extended. With tendon loading the distal carpal bones were more ulnary deviated at each angle of wrist motion. The capitate was on the average 2.4° (p=0.004) more ulnary deviated.During radioulnar deviation, the proximal carpal bones were more radially deviated with the lunate 0.7° more into radial deviation with tendon loading (p<0.001). Conversely, the bones of distal row were more flexed and supinated with the capitate 1.5° more into flexion (p=0.025) and 1.0° more into supination (p=0.011).In conclusion, the application of a constant load onto the flexor and extensor tendons in cadaver experiments has a small but statistically significant effect on the carpal kinematics during flexion–extension and radioulnar deviation.  相似文献   

7.
Past studies have hypothesized that aspects of hominin upper limb morphology are linked to the ability to produce stone tools. However, we lack the data on upper limb motions needed to evaluate the biomechanical context of stone tool production. This study seeks to better understand the biomechanics of stone tool‐making by investigating upper limb joint kinematics, focusing on the role of the wrist joint, during simple flake production. We test the hypotheses, based on studies of other upper limb activities (e.g., throwing), that upper limb movements will occur in a proximal‐to‐distal sequence, culminating in rapid wrist flexion just prior to strike. Data were captured from four amateur knappers during simple flake production using a VICON motion analysis system (50 Hz). Results show that subjects utilized a proximal‐to‐distal joint sequence and disassociated the shoulder joint from the elbow and wrist joints, suggesting a shared strategy employed in other contexts (e.g., throwing) to increase target accuracy. The knapping strategy included moving the wrist into peak extension (subject peak grand mean = 47.3°) at the beginning of the downswing phase, which facilitated rapid wrist flexion and accelerated the hammerstone toward the nodule. This sequence resulted in the production of significantly more mechanical work, and therefore greater strike forces, than would otherwise be produced. Together these results represent a strategy for increasing knapping efficiency in Homo sapiens and point to aspects of skeletal anatomy that might be examined to assess potential knapping ability and efficiency in fossil hominin taxa. Am J Phys Anthropol 143:134‐145, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Biomechanical models may aid in improving diagnosis and treatment of wrist joint disorders. As input, geometrical information is required for model development. Previous studies acquired some elements of the average wrist joint geometry. However, there is a close geometric functional match between articulating surfaces and ligament geometry. Therefore, biomechanical models need to be fed with the geometric data of individual joints. This study is aimed at acquiring geometric data of cartilage surfaces and ligaments from individual wrist joints by using a cryomicrotome imaging system and the evaluation of inter- and intra-observer variability of the data.The 3D geometry of 30 cartilage surfaces and 15 ligaments in three cadaver wrists was manually detected and quantitatively reconstructed. The inter- and intra-observer variability of the cartilage surface detection was 0.14 and 0.19 mm, respectively. For the position of the radius attachment of the dorsal radiocarpal ligament (DRC), the observer variations were 0.12 and 0.65 mm, for intra-/inter-observer, respectively. For the DRC attachment on the triquetrum, the observer variations were 0.22 and 1.19 mm.Anatomic reconstruction from 3D cryomicrotome images offer a method to obtain unique geometry data of the entire wrist joint for modeling purposes.  相似文献   

9.
Short-range stiffness (SRS) is a mechanical property of muscles that is characterized by a disproportionally high stiffness within a short length range during both lengthening and shortening movements. SRS is attributed to the cross-bridges and is beneficial for stabilizing a joint during, e.g., postural conditions. Thus far, SRS has been estimated mainly on isolated mammalian muscles. In this study we presented a method to estimate SRS in vivo in the human wrist joint.SRS was estimated at joint level in the angular domain (N m/rad) for both flexion and extension rotations of the human wrist in nine healthy subjects. Wrist rotations of 0.15 rad at 3 rad/s were imposed at eight levels of voluntary contraction ranging from 0 to 2.1 N m by means of a single axis manipulator.Flexion and extension SRS of the wrist joint was estimated consistently and accurately using a dynamic nonlinear model that was fitted onto the recorded wrist torque. SRS increased monotonically with torque in a way consistent with previous studies on isolated muscles.It is concluded that in vivo measurement of joint SRS represents the population of coupled cross-bridges in wrist flexor and extensor muscles. In its current form, the presented technique can be used for clinical applications in many neurological and muscular diseases where altered joint torque and (dissociated) joint stiffness are important clinical parameters.  相似文献   

10.
Dynamic movement trajectories of low mass systems have been shown to be predominantly influenced by passive viscoelastic joint forces and torques compared to momentum and inertia. The hand is comprised of 27 small mass segments. Because of the influence of the extrinsic finger muscles, the passive torques about each finger joint become a complex function dependent on the posture of multiple joints of the distal upper limb. However, biomechanical models implemented for the dynamic simulation of hand movements generally don’t extend proximally to include the wrist and distal upper limb. Thus, they cannot accurately represent these complex passive torques. The purpose of this short communication is to both describe a method to incorporate the length-dependent passive properties of the extrinsic index finger muscles into a biomechanical model of the upper limb and to demonstrate their influence on combined movement of the wrist and fingers. Leveraging a unique set of experimental data, that describes the net passive torque contributed by the extrinsic finger muscles about the metacarpophalangeal joint of the index finger as a function of both metacarpophalangeal and wrist postures, we simulated the length-dependent passive properties of the extrinsic finger muscles. Dynamic forward simulations demonstrate that a model including these properties passively exhibits coordinated movement between the wrist and finger joints, mimicking tenodesis, a behavior that is absent when the length-dependent properties are removed. This work emphasizes the importance of incorporating the length-dependent properties of the extrinsic finger muscles into biomechanical models to study healthy and impaired hand movements.  相似文献   

11.
摘要 目的:探究经颅直流电刺激干预联合康复训练对痉挛型脑瘫患儿精细运动功能的影响。方法:选取2020年7月至2022年6月在我院儿童康复科收治的痉挛型脑瘫患儿116例为研究对象,按随机数字表法将患儿随机分为观察组、对照组,每组58例,对照组采用常规康复训练,观察组在对照组的基础上采用tDCS治疗。采用采用关节活动度量角器测定腕关节背伸关节活动度(AROM) ,采用脑瘫患儿精细运动功能测试量表(FMFM)评估患儿的双上肢精细操作能力,采用Peabody 精细运动发育量表(PDMS-FM)评定双手精细运动功能,采用改良Ashworth肌张力评定量表(MAS)评估患儿患侧上肢肘关节肌张力状况,比较两组治疗前后的各项指标差异变化。结果:治疗后两组患儿AROM评分较治疗前均显著增加,且观察组AROM评分显著高于对照组,差异具有统计学意义(P<0.05)。治疗后两组患儿FMFM评分较治疗前均显著增加,且观察组FMFM评分显著高于对照组,差异具有统计学意义(P<0.05)。治疗后两组患儿FMQ评分较治疗前均显著增加,且观察组FMQ评分显著高于对照组,差异具有统计学意义(P<0.05)。治疗后两组患儿MAS评分较治疗前均显著降低,且观察组MAS评分显著低于对照组,差异具有统计学意义(P<0.05)。结论:经颅直流电刺激干预联合康复训练可以显著改善痉挛型脑瘫患儿腕关节背伸关节活动度、双上肢精细操作能力、双手精细运动功能和患侧上肢肘关节肌张力,对精细运动功能具有改善作用。  相似文献   

12.
The measurement of wrist passive ranges of motion (ROMs) can provide insight into improvements and allow for effective monitoring during a rehabilitation program. Compared with conventional methods, this study proposed a new robotic assessment technique for measuring passive ROMs of the wrist. The robotic system has a reconfigurable handle structure that allows for multi-dimensional applications of wrist motions. The assessment reliability of this robotic system was analysed on 11 subjects for measuring wrist extension/flexion and radial/ulnar deviation. Preliminary data demonstrated its potential with intraclass correlation coefficient (ICC2,1) all greater than 0.857 and standard error of measurement (SEM) less than 3.38°. Future work will focus on the standardization of the assessment protocol of this robotic system for assessment purposes, paving the way for its clinical application.  相似文献   

13.
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed.  相似文献   

14.
We aimed to determine the role of the wrist, elbow and shoulder joints to single-finger tapping. Six human subjects tapped with their index finger at a rate of 3 taps/s on a keyswitch across five conditions, one freestyle (FS) and four instructed tapping strategies. The four instructed conditions were to tap on a keyswitch using the finger joint only (FO), the wrist joint only (WO), the elbow joint only (EO), and the shoulder joint only (SO). A single-axis force plate measured the fingertip force. An infra-red active-marker three-dimensional motion analysis system measured the movement of the fingertip, hand, forearm, upper arm and trunk. Inverse dynamics estimated joint torques for the metacarpal-phalangeal (MCP), wrist, elbow, and shoulder joints. For FS tapping 27%, 56%, and 18% of the vertical fingertip movement were a result of flexion of the MCP joint and wrist joint and extension of the elbow joint, respectively. During the FS movements the net joint powers between the MCP, wrist and elbow were positively correlated (correlation coefficients between 0.46 and 0.76) suggesting synergistic efforts. For the instructed tapping strategies (FO, WO, EO, and SO), correlations decreased to values below 0.35 suggesting relatively independent control of the different joints. For FS tapping, the kinematic and kinetic data indicate that the wrist and elbow contribute significantly, working in synergy with the finger joints to create the fingertip tapping task.  相似文献   

15.
Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject’s upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks.  相似文献   

16.
The wrist is essential for hand function. Yet, due to the complexity of the wrist and hand, studies often examine their biomechanical features in isolation. This approach is insufficient for understanding links between orthopaedic surgery at the wrist and concomitant functional impairments at the hand. We hypothesize that clinical reports of reduced force production by the hand following wrist surgeries can be explained by the surgically-induced, biomechanical changes to the system, even when those changes are isolated to the wrist. This study develops dynamic simulations of lateral pinch force following two common surgeries for wrist osteoarthritis: scaphoid-excision four-corner fusion (SE4CF) and proximal row carpectomy (PRC). Simulations of lateral pinch force production in the nonimpaired, SE4CF, and PRC conditions were developed by adapting published models of the nonimpaired wrist and thumb. Our simulations and biomechanical analyses demonstrate how the increased torque-generating requirements at the wrist imposed by the orthopaedic surgeries influence force production to such an extent that changes in motor control strategy are required to generate well-directed thumb-tip end-point forces. The novel implications of our work include identifying the need for surgeries that optimize the configuration of wrist axes of rotation, rehabilitation strategies that improve post-operative wrist strength, and scientific evaluation of motor control strategies following surgery. Our simulations of SE4CF and PRC replicate surgically-imposed decreases in pinch strength, and also identify the wrist’s torque-generating capacity and the adaptability of muscle coordination patterns as key research areas to improve post-operative hand function.  相似文献   

17.
The cross-sectional area of a particular ligament is an important characteristic in order to establish the biomechanical properties of this ligament. Calculations of the cross-sectional areas of the ligaments of the wrist joint are made from two three-dimensional models. It is discussed that differences between the presented and the scarcely published data on cross-sectional areas are the result of different divisions of the wrist-joint ligamentous complex into separate ligaments.  相似文献   

18.
Understanding the dynamics of wrist rotations is important for many fields, including biomechanics, rehabilitation and motor neuroscience. This paper provides an experimentally based mathematical model of wrist rotation dynamics in Flexion-Extension (FE) and Radial-Ulnar Deviation (RUD), and characterizes the torques required to overcome the passive mechanical impedance of wrist rotations. We modeled the wrist as a universal joint with non-intersecting axes. The equations of motion of the hand rotating about the wrist joint include inertial, damping, and stiffness terms, with parameter values based on direct measurements (stiffness) or measurements combined with data available in the literature (inertia, damping). We measured the wrist kinematics of six young, healthy subjects making comfortable and fast-paced wrist rotations (±15° in FE, RUD, and combinations) and inserted these kinematic data into the model of wrist rotation dynamics. With this we quantified the torques required to overcome the impedance of wrist rotations and evaluated the relative importance of individual impedance terms as well as interactions between the degrees of freedom. We found that the wrist's passive stiffness is the major impedance the neuromuscular system must overcome to rotate the wrist. Inertia and passive damping only become important for very fast movements. Unlike elbow and shoulder reaching movements, inertial interaction torques are negligible for wrist rotations. Interaction torques due to stiffness and damping, however, are significant. Finally, we found that some model terms (inertial interaction torques, axis offset, and, for moderately sized rotations, non-linearities) can be neglected with little loss of accuracy, resulting in a simple, linear model useful for studies in biomechanics, motor neuroscience, and rehabilitation.  相似文献   

19.
Isokinetic exercise has been commonly used in knee rehabilitation, conditioning and research in the past two decades. Although many investigators have used various experimental and theoretical approaches to study the muscle and joint force involved in isokinetic knee extension and flexion exercises, only a few of these studies have actually distinguished between the tibiofemoral joint forces and muscle forces. Therefore, the objective of this study was to specify, via an eletromyography(EMG)-driven muscle force model of the knee, the magnitude of the tibiofemoral joint and muscle forces acting during isokinetic knee extension and flexion exercises. Fifteen subjects ranging from 21 to 36 years of age volunteered to participate in this study. A Kin Com exercise machine (Chattecx Corporation, Chattanooga, TN, U.S.A.) was used as the loading device. An EMG-driven muscle force model was used to predict muscle forces, and a biomechanical model was used to analyze two knee joint constraint forces; compression and shear force. The methods used in this study were shown to be valid and reliable (r > 0.84 andp < 0.05). The effects on the tibiofemoral joint force during knee isokinetic exercises were compared with several functional activities that were investigated by earlier researchers. The muscle forces generated during knee isokinetic exercise were also obtained. Based on the findings obtained in this study, several therapeutic justifications for knee rehabilitation are proposed.  相似文献   

20.
Nucleus replacement was deemed to have therapeutic potential for patients with intervertebral disc herniation. However, whether a patient would benefit from nucleus replacement is technically unclear. This study aimed to investigate the influence of nucleus pulposus (NP) removal on the biomechanical behavior of a lumbar motion segment and to further explore a computational method of biomechanical characteristics of NP removal, which can evaluate the mechanical stability of pulposus replacement. We, respectively, reconstructed three types of models for a mildly herniated disc and three types of models for a severely herniated disc based on a L4–L5 segment finite element model with computed tomography image data from a healthy adult. First, the NP was removed from the herniated disc models, and the biomechanical behavior of NP removal was simulated. Second, the NP cavities were filled with an experimental material (Poisson's ratio = 0.3; elastic modulus = 3 MPa), and the biomechanical behavior of pulposus replacement was simulated. The simulations were carried out under the five loadings of axial compression, flexion, lateral bending, extension, and axial rotation. The changes of the four biomechanical characteristics, i.e. the rotation degree, the maximum stress in the annulus fibrosus (AF), joint facet contact forces, and the maximum disc deformation, were computed for all models. Experimental results showed that the rotation range, the maximum AF stress, and joint facet contact forces increased, and the maximum disc deformation decreased after NP removal, while they changed in the opposite way after the nucleus cavities were filled with the experimental material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号