首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes.  相似文献   

2.
Orexin 1 receptor (OX1R) is thought to be involved in various body functions, including arousal maintenance and emotional control, but the full details of its function remain unknown. OX1R imaging with positron emission tomography (PET) would be useful in elucidating the orexin system including OX1R, but no PET probes targeting OX1R have been reported. We, therefore, designed and synthesized tetrahydroisoquinoline (THIQ) derivatives as novel PET probes targeting OX1R, and evaluated their utility. In an in vitro competitive binding assay, THIQ-1 and THIQ-2 showed significantly higher binding to OX1R (IC50 = 30 and 31 nM, respectively) than OX2R (IC50 = 160 and 332 nM, respectively). These features were also observed in a cell binding assay using [18F]THIQ-1 and [18F]THIQ-2, demonstrating their OX1R-specific binding property in vitro. In a biodistribution study using normal mice, the brain uptake of [18F]THIQ-1 was higher than that of [18F]THIQ-2, but further improvement is required for in vivo imaging with PET. Taken together, [18F]THIQ-1 and [18F]THIQ-2 have the potential to become useful imaging probes for PET targeting the OX1R, but require additional structural changes to improve their brain uptake.  相似文献   

3.
During anaerobic growth of Klebsiella pneumoniae on citrate, 9.4 mmol of H2/mol of citrate (4-kPa partial pressure) was formed at the end of growth besides acetate, formate, and CO2. Upon addition of NiCl2 (36 μM) to the growth medium, hydrogen formation increased about 36% to 14.8 mmol/mol of citrate (6 kPa), and the cell yield increased about 15%. Cells that had been harvested and washed under anoxic conditions exhibited an H2-dependent formation of NAD(P)H in vivo. The reduction of internal NAD(P)+ was also achieved by the addition of formate. In crude extracts, the H2:NAD+ oxidoreductase activity was 0.13 μmol min−1 mg−1, and 76% of this activity was found in the washed membrane fraction. The highest specific activities of the membrane fraction were observed in 50 mM potassium phosphate, with 1.6 μmol of NADPH formed min−1 mg−1 at pH 7.0 and 1.7 μmol of NADH formed min−1 mg−1 at pH 9.5. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the Na+/H+ antiporter monensin, the H2-dependent reduction of NAD+ by membrane vesicles decreased only slightly (about 16%). The NADP+- or NAD+-reducing hydrogenases were solubilized from the membranes with the detergent lauryldimethylamine-N-oxide or Triton X-100. NAD(P)H formation with H2 as electron donor, therefore, does not depend on an energized state of the membrane. It is proposed that hydrogen which is formed by K. pneumoniae during citrate fermentation is recaptured by a novel membrane-bound, oxygen-sensitive H2:NAD(P)+ oxidoreductase that provides reducing equivalents for the synthesis of cell material.  相似文献   

4.
Oscillations of intracellular Ca2+ provide a novel mechanism for sustained activation of cellular processes. Receptor-activated oscillations are mainly thought to occur through rhythmic IP3-dependent store discharge. However, as shown here in HEK293 cells 1 nM orexin-A (Ox-A) acting at OX1 receptors (OX1R) triggered oscillatory Ca2+ responses, requiring external Ca2+. These responses were attenuated by interference with TRPC3 channel (but not TRPC1/4) function using dominant negative constructs, elevated Mg2+ (a blocker of many TRP channels) or inhibition of phospholipase A2. These treatments did not affect Ca2+ oscillations elicited by high concentrations of Ox-A (100 nM) in the absence of external Ca2+. OX1R are thus able to activate TRPC(3)-channel-dependent oscillatory responses independently of store discharge.  相似文献   

5.
The orexin 1 receptor (OX1R) antagonists carrying a morphinan skeleton such as YNT-707 (2) and YNT-1310 (3) showed potent and extremely high selective antagonistic activity against OX1R. In the course of our study of the essential structure of YNT-707 for high binding affinity against OX1R, we prepared derivatives of 2 without the D- and 4,5-epoxy rings to clarify the roles of these structural determinants toward OX1R antagonistic activity. The D- and 4,5-epoxy rings played important roles for the active orientation of the 17-sulfonamide and 6-amide side chains. Finally, we identified the simple structure required for selective OX1R antagonistic activity in the complex morphinan skeleton, which is expected to be a useful scaffold for further design of OX1R ligands.  相似文献   

6.
The D-nor-nalfurafine derivatives, which were synthesized by contraction of the six-membered D-ring in nalfurafine (1), had no affinity for orexin 1 receptors (OX1Rs). The 17N-lone electron pair in 1 oriented toward the axial direction, while that of D-nor-derivatives was directed in the equatorial configuration. The axial lone electron pair can form a hydrogen bond with the 14-hydroxy group, which could push the 6-amide side chain toward the downward direction with respect to the C-ring. The resulting conformation would be an active conformation for binding with OX1R. The dual affinities of 1 for OX1R and κ opioid receptor (KOR) led us to elucidate the mechanism by which only 1 showed no aversion but U-50488H. Actually, 1 selectively induced severe aversion in OX1R knockout mice, but not in wild-type mice. These results well support that OX1R suppresses the aversion of 1. This is the elucidation of long period puzzle which 1 showed no aversion in KOR.  相似文献   

7.
Zusammenfassung In Zellen von R. rubrum war das Verhältnis von oxydiertem zu reduziertem NAD(P) vom Sauerstoffpartialdruck im Medium, der Lichtintensität und der Nährbodenzusammensetzung abhängig. In ruhenden Kulturen unter aeroben Bedingungen im Licht oder im Dunkeln und anaerob bei hoher Lichtintensität, wenn der ATP-Pool in den Zellen groß ist, beobachtete man einen relativ hohen Wert für das Verhältnis von NAD(P)+/NAD(P)H. Unter Kulturbedingungen, bei denen der ATP-Gewinn der Zellen gering ist (anaerob Schwachlicht oder anaerob Dunkel), sank das Verhältnis von NAD(P)+/NAD(P)H ab. Die niedrigsten Werte für das Verhältnis von NAD(P)+/NAD(P)H wurden dementsprechend in anaerober Dunkelkultur, die höchsten in aerober Lichtkultur gefunden.Anaerob im Dunkeln war der NAD(P)H-Spiegel auch vom Substrat abhängig: mit Fructose oder ohne Substrat beobachtete man einen sehr großen NAD(P)H-Pool in den Zellen; nach Zugabe von Acetat, Succinat, Pyruvat oder Malat sank der Spiegel der reduzierten Coenzyme ab.In wachsenden Kulturen (außer anaerob im Dunkeln) nahm die relative Konzentration von NAD+ und der NADP+-Pool im Vergleich zu ruhenden Zellen stark zu (3-5fach).Änderungen im Verhältnis von NAD+/NADH und von NADP+/NADPH waren aber nicht unter allen Kulturbedingungen direkt korreliert.Es wird diskutiert, wieweit das Adenylatsystem und das NAD(P)-System einen regulativen Einfluß auf die Bacteriochlorophyll-Synthese und die Morphogenese bei Athiorhodaceae haben.
The influence of culture conditions on the NAD(P) content of Rhodospirillum rubrum cells
Summary In cells of R. rubrum the ratio of oxidized to reduced NAD(P) depended on the oxygen pressure in the medium, the light intensity, and the composition of the medium. The ratio of NAD(P)+/NAD(P)H was high under conditions when the ATP-pool in the cell is large, viz. in resting cultures either kept aerobically in the light or in the dark or kept anaerobically in strong light. The quotient NAD(P)+/NAD(P)H decreased under conditions of reduced ATP-synthesis in the cells (anaerobic in dimlight or in the dark). Consequently, the lowest NAD(P)+/NAD(P)H value was observed in anaerobic dark cultures, the highest in aerobic light cultures.Under anaerobic conditions in the dark, the NAD(P)H level depended also on the substrate: with fructose or without any substrate, a large NAD(P)H pool was observed; the level of reduced coenzymes decreased upon addition of acetate, succinate, pyruvate, or malate.In growing cultures (except under anaerobic conditions in the dark) the relative concentration of NAD+ and the NADP+ pool showed a considerable increase (3 to 5 fold), as compared with resting cells. However, the changes in the proportions of NAD+/NADH and NADP+/NADPH were not directly correlated under all culture conditions.The regulative influence of the adenylate and the NAD(P) systems on the synthesis of bacteriochlorophyll and morphogenesis in Athiorhodaceae is discussed.

Abkürzungen BChl Bacteriochlorophyll a - NAD(P) NAD-Nucleotide=reduziertes und oxydiertes Nicotinamid-Adenin-Dinucleotid und Nicotinamid-Adenin-Dinucleotidphosphat Herrn Prof. Dr. H. Engel zum 70. Geburtstag gewidmet.  相似文献   

8.
Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Propionibacterium acnes (P. acnes), a gram-positive anareobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS) are produced by keratinocytes upon P. acnes infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by P. acnes. In our hands, ROS, and especially superoxide anions (O2 •−), were rapidly produced by keratinocytes upon stimulation by P. acnes surface proteins. In P. acnes-stimulated keratinocytes, O2 •− was produced by NAD(P)H oxidase through activation of the scavenger receptor CD36. O2 •− was dismuted by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, P. acnes-induced O2 •− abrogated P. acnes growth and was involved in keratinocyte lysis through the combination of O2 •− with nitric oxide to form peroxynitrites. Finally, retinoic acid derivates, the most efficient anti-acneic drugs, prevent O2 •− production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans.  相似文献   

9.
Active pharmaceutical ingredients (APIs) such as l-sugars and keto acids are favorably accessed through selective oxidation of sugar alcohols and amino acids, respectively, catalyzed by NAD(P)-dependent dehydrogenases. Cofactor regeneration from NAD(P)H conveniently is achieved via water-forming NAD(P)H oxidases (nox2), which only need molecular oxygen as co-substrate. Turnover-dependent overoxidation of the conserved cysteine residue in the active site of water-forming NADH oxidases is the presumed cause of the limited nox2 stability.We present a novel NAD(P)H oxidase, NoxV from Lactobacillus plantarum, with specific activity of 167 U/mg and apparent kinetic constants at air saturation and 25 °C of kcat,app = 212 s−1 and KM,app = 50.2 μM in the broad pH optimum from 5.5 to 8.0. The enzyme features a higher stability than other NAD(P)H oxidases against overoxidation, as is evidenced by a higher total turnover number, in the presence (168,000) and, most importantly, also in the absence (128,000) of exogenously added reducing agents. While the native enzyme shows exclusively activity on NADH, we engineered the substrate binding pocket to generate variants, G178K,R and L179K,R,H that accommodate and oxidize both NADH and NADPH as substrates.  相似文献   

10.
Changes in cytosolic [Ca2+]i, mitochondrial potential (ΔVm), and mitochondrial NAD(P)H autofluorescence were compared in experiments on cultured cerebellar granule cells co-loaded with Ca2+ indicator Fluo-3FF or mitochondrial potential-sensitive probe Rh123. In the majority of neurons (94% of cells, n = 205, 28 experiments) the delayed Ca2+ deregulation (DCD) induced by Glu (100 μM) was preceded by more or less prolonged decrease in NAD(P)H, which in 57% of cells underwent a further (secondary) reduction during DCD development. To clarify the origin of these changes in NAD(P)H production during DCD we examined the effects of the protonophore FCCP on NAD(P)H increase induced by the electron chain blocker CN (3 mM) application. The data suggest that a pronounced lowering of mitochondrial pH during DCD contributed to the mechanism of Glu-induced suppression of NAD(P)H production.  相似文献   

11.
The mechanisms of nitric oxide (NO) synthesis in plants have been extensively investigated. NO degradation can be just as important as its synthesis in controlling steady-state levels of NO. Here, we examined NO degradation in mitochondria isolated from potato tubers and the contribution of the respiratory chain to this process. NO degradation was faster in mitochondria energized with NAD(P)H than with succinate or malate. Oxygen consumption and the inner membrane potential were transiently inhibited by NO in NAD(P)H-energized mitochondria, in contrast to the persistent inhibition seen with succinate. NO degradation was abolished by anoxia and superoxide dismutase, which suggested that NO was consumed by its reaction with superoxide anion (O2). Antimycin-A stimulated and myxothiazol prevented NO consumption in succinate- and malate-energized mitochondria. Although favored by antimycin-A, NAD(P)H-mediated NO consumption was not abolished by myxothiazol, indicating that an additional site of O2 generation, besides complex III, stimulated NO degradation. Larger amounts of O2 were generated in NAD(P)H- compared to succinate- or malate-energized mitochondria. NAD(P)H-mediated NO degradation and O2 production were stimulated by free Ca2+ concentration. Together, these results indicate that Ca2+-dependent external NAD(P)H dehydrogenases, in addition to complex III, contribute to O2 production that favors NO degradation in potato tuber mitochondria.  相似文献   

12.
The essential structure of the orexin 1 receptor (OX1R) antagonist YNT-707 (2) was clarified, particularly the roles to OX1R antagonist activities of the 3-OMe, the 4,5-epoxy ring, the 14-hydroxy group, and the orientation of the 6-amide side chain.The 3-OMe and 17-sulfonamide group were shown to be essential for the OX1R antagonistic activity. The 4,5-epoxy ring plays an important role for the active orientation of the 6-amide group. The 14-hydroxy group could lower the activity of the 6β-amide isomer by the interaction of the 14-hydroxy group with the 6-amide group, which could orient the 6-amide group toward the upper side of the C-ring.Finally, we proposed the difference in the active conformation between OX1R and κ opioid receptor (KOR), especially in the orientation of the 6-amide group which is expected to be a useful guide for medicinal chemists to design OX1R ligands.  相似文献   

13.
The morphinan-type orexin 1 receptor (OX1R) antagonists such as YNT-707 (2) and YNT-1310 (3) show potent and extremely high selective antagonistic activity against OX1R. In the course of our studies of the essential structure of 2, we identified new scaffolds by simplification of the morphinan skeleton. However, the new chemical entities carrying the D-ring removed scaffold showed insufficient activity. To improve the activity of these derivatives, we investigated the effect of substituents mainly focused on the 17-nitrogen group. The 17-N-substituted derivatives, as well as the cyclic derivatives, were synthesized and examined the OX1R antagonistic activity. The assay results showed the interesting relationship between the OX1R antagonistic activity and the substituents on the 17-nitrogen: the antagonistic activity was increased as the bulkiness of 17-substituents increased. Finally, the 17-N-Boc derivative 14a showed the most potent OX1R antagonistic activity (Ki = 14.8 nM).  相似文献   

14.
The reduction of ferric leghemoglobin (Lb3+) from soybean (Glycine max (L.) Merr.) nodules by riboflavin, FMN and FAD in the presence of NAD(P)H was studied in vitro. The system NAD(P)H + flavin reduced Lb3+ to oxyferrous (Lb2+ · O2) or deoxyferrous (Lb2+) leghemoglobin in aerobic or anaerobic conditions, respectively. In the absence of O2 the reaction was faster and more effective (i.e. less NAD(P)H oxidized per mole Lb3+ reduced) than in the presence of O2; this phenomenon was probably because O2 competes with Lb3+ for reductant, thus generating activated O2 species. The flavin-mediated reduction of Lb3+ did not entail production of superoxide or peroxide, indicating that NAD(P)H-reduced flavins were able to reduce Lb3+ directly. The NAD(P)H + flavin system also reduced the complexes Lb3+ · nicotinate and Lb3+ · acetate to Lb2+ · O2, Lb2+ or Lb2+ · nicotinate, depending on the concentrations of ligands and of O2. In the presence of 200 M nitrite most Lb remained as Lb3+ in aerobic conditions but the nitrosyl complex (Lb2+ · NO) was generated in anaerobic conditions. The above-mentioned characteristics of the NAD(P)H + flavin system, coupled with its effectiveness in reducing Lb3+ at physiological levels of NAD(P)H and flavins in soybean nodules, indicate that this mechanism may be especially important for reducing Lb3+ in vivo.Abbreviations and Terminology FLbR ferric leghemoglobin reductase - Hb2+ /Hb3+ hemoglobin containing Fe2+ /Fe2+ - Lb2+ /Lb3+ leghemoglobin containing Fe2+ /Fe3+ - Lb3+ · nicotinate/acetate Lb in which nicotinate or acetate are complexed to Lb3+ - Lb2+ · O2/CO/NO/nicotinate Lb in which O2, CO, NO or nicotinate are complexed to Lb2+ - Rfl riboflavin - SOD superoxide dismutase (EC 1.15.1.1) Published as Paper No. 9237, Journal Series, Nebraska Agricultural Research DivisionWe thank M.B. Crusellas for his skillful drawings. M. Becana thanks the Spanish Ministry of Education and Science/Fulbright Commission for financial support.  相似文献   

15.
Primary cytomegalovirus (CMV) infection promotes oxidative stress and reduces nitric oxide (NO) bioavailability in endothelial cells. These events are among the earliest vascular responses to cardiovascular risk factors. We assessed the roles of NAD(P)H oxidase and NO bioavailability in microvascular responses to persistent CMV infection alone or with hypercholesterolemia. Wild-type (WT) or gp91phox (NAD(P)H oxidase subunit) knockout mice received mock inoculum or 3 × 104 PFU murine CMV (mCMV) ip 5 weeks before placement on a normal or high-cholesterol diet (HC) for 4 weeks before assessment of arteriolar function and venular blood cell recruitment using intravital microscopy. Some WT groups received sepiapterin (a precursor of the nitric oxide synthase cofactor tetrahydrobiopterin) or apocynin (NAD(P)H oxidase inhibitor/antioxidant). Endothelium-dependent vasodilation was impaired in mCMV vs mock WT, regardless of diet. This was not affected by sepiapterin, and pharmacological inhibition of nitric oxide synthase reduced dilation similarly in mock and mCMV mice. Apocynin or deficiency of total, but not blood cell or vascular wall only (tested using bone marrow chimeras), gp91phox protected against arteriolar dysfunction. Blood cell recruitment was induced by mCMV–HC. Sepiapterin, but not NAD(P)H oxidase deficiency/apocynin, reduced leukocyte accumulation, whereas platelet adhesion was reduced by sepiapterin, apocynin, or total, platelet-specific, or vascular wall gp91phox deficiency. These data implicate activation of both hematopoietic and vessel wall NAD(P)H oxidase in mCMV-induced arteriolar dysfunction and platelet and vascular NAD(P)H oxidase in the thrombogenic phenotype induced by mCMV–HC. In contrast, findings with sepiapterin suggest that eNOS dysfunction, perhaps uncoupling, mediates venular, but not arteriolar, responses to mCMV–HC, thus indicating that NAD(P)H oxidase and eNOS differentially regulate microvascular responses to mCMV.  相似文献   

16.
Recent evidence suggests that interleukin-1β (IL-1β), which was originally identified as a proinflammatory cytokine, is also required in the brain for memory processes. We have previously shown that IL-1β synthesis in the hippocampus is dependent on P2X7 receptor (P2X7R), which is an ionotropic receptor of ATP. To substantiate the role of P2X7R in both brain IL-1β expression and memory processes, we examined the induction of IL-1β mRNA expression in the hippocampus of wild-type (WT) and homozygous P2X7 receptor knockout mice (P2X7R−/−) following a spatial memory task. The spatial recognition task induced both IL-1β mRNA expression and c-Fos protein activation in the hippocampus of WT but not of P2X7R−/− mice. Remarkably, P2X7R−/− mice displayed spatial memory impairment in a hippocampal-dependant task, while their performances in an object recognition task were unaltered. Taken together, our results show that P2X7R plays a critical role in spatial memory processes and the associated hippocampal IL-1β mRNA synthesis and c-Fos activation.  相似文献   

17.
NAD(P)H dehydrogenase was purified approximately 480-fold from Saccharomyces cerevisiae with 6.5% activity yield. The enzyme was homogeneous on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 40,000–44,000 by gel filtration on Sephadex G-150 column chromatography and SDS-polyacrylamide gel electrophoresis. The Km values for NADPH and NADH were 7.3 μM and 0.1 mM, respectively. The activity of the enzyme increased approximately 4-fold with Cu2+. FAD, FMN and cytochrome c were not effective as electron acceptors, although Fe(CN)63− was slightly effective. NADH generated by the reaction of lactaldehyde dehydrogenase in the glycolytic methylglyoxal pathway will be reoxidized by NAD(P)H dehydrogenase. NAD(P)H dehydrogenase thus may contribute to the reduction/oxidation system in the glycolytic methylglyoxal pathway to maintain the flux of methylglyoxal to lactic acid via lactaldehyde.  相似文献   

18.
Chronic heart failure is often associated with sympathoexcitation and blunted arterial baroreflex function. These phenomena have been causally linked to elevated central ANG II mechanisms. Recent studies have shown that NAD(P)H oxidase-derived reactive oxygen species (ROS) are important mediators of ANG II signaling and therefore might play an essential role in these interactions. The aims of this study were to determine whether central subchronic infusion of ANG II in normal animals has effects on O2- production and expression of NAD(P)H oxidase subunits as well as ANG II type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM). Twenty-four male New Zealand White rabbits were divided into four groups and separately received a subchronic intracerebroventricular infusion of saline alone, ANG II alone, ANG II with losartan, and losartan alone for 1 wk. On day 7 of intracerebroventricular infusion, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) values were recorded, and arterial baroreflex sensitivity was evaluated while animals were in the conscious state. We found that ANG II significantly increased baseline RSNA (161.9%; P < 0.05), mRNA and protein expression of AT1 receptors (mRNA, 66.7%; P < 0.05; protein, 85.1%; P < 0.05), NAD(P)H oxidase subunits (mRNA, 120.0-200.0%; P < 0.05; protein, 90.9-197.0%; P < 0.05), and O2- production (83.2%; P < 0.05) in the RVLM. In addition, impaired baroreflex control of HR (Gain(max) reduced by 48.2%; P < 0.05) and RSNA (Gain(max) reduced by 53.6%; P < 0.05) by ANG II was completely abolished by losartan. Losartan significantly decreased baseline RSNA (-49.5%; P < 0.05) and increased baroreflex control of HR (Gain(max) increased by 64.8%; P < 0.05) and RSNA (Gain(max) increased by 67.9%; P < 0.05), but had no significant effects on mRNA and protein expression of AT1 receptor and NAD(P)H oxidase subunits and O2- production in the RVLM. These data suggest that in normal rabbits, NAD(P)H oxidase-derived ROS play an important role in the modulation of sympathetic activity and arterial baroreflex function by subchronic central treatment of exogenous ANG II via AT1 receptors.  相似文献   

19.

Key message

Alternative pathway (AP) is involved in the tolerance of highland barley seedlings to the low-nitrogen stress by dissipating excessive reducing equivalents generated by photosynthesis and maintaining the cellular redox homeostasis.

Abstract

Low nitrogen (N) is a major limiting factor for plant growth and crop productivity. In this study, we investigated the roles of the alternative pathway (AP) in the tolerance of two barley seedlings, highland barley (Kunlun12) and barley (Ganpi6), to low-N stress. The results showed that the chlorophyll content and the fresh weight decreased more in Ganpi6 than those in Kunlun12 under low-N stress, suggesting that Kunlun12 has higher tolerance to low-N stress than Ganpi6. AP capacity was markedly induced by low-N stress; and it was higher in Kunlun12 than in Ganpi6. Comparatively, the cytochrome pathway capacity was not affected under all conditions. Western-blot analysis showed that the protein level of the alternative oxidase (AOX) increased under low-N stress in Kunlun12 but not in Ganpi6. Under low-N stress, the NAD(P)H content and the NAD(P)H to NAD(P)++NAD(P)H ratio in Ganpi6 increased more than those in Kunlun12. Furthermore, photosynthetic parameters (Fv/Fm, qP, ETR and Yield) decreased markedly and qN increased, indicating photoinhibition occurred in both barley seedlings, especially in Ganpi6. When AP was inhibited by salicylhydroxamic acid (SHAM), the NAD(P)H content and the NAD(P)H to NAD(P)++NAD(P)H ratio dramatically increased under all conditions, resulting in the marked accumulation of H2O2 and malondialdehyde in leaves of both barley seedlings. Meanwhile, the malate–oxaloacetate shuttle activity and the photosynthetic efficiency were further inhibited. Taken together, AP is involved in the tolerance of highland barley seedlings to low-N stress by dissipating excess reducing equivalents and maintaining the cellular redox homeostasis.
  相似文献   

20.
The 14-dehydration- and 14-H derivatives of the orexin 1 receptor (OX1R) antagonist YNT-707 (2) were synthesized. The obtained derivatives showed higher affinities for OX1R than the corresponding 14-hydroxy derivatives. The conformational analysis suggested that the 17-sulfonamide groups in the derivatives without the 14-hydroxy group have a greater tendency to be oriented toward the upper side of the D-ring compared with the 14-hydroxy derivatives. Additionally, the 14-dehydration-derivative with 6α-amide side chain showed significantly higher affinity than the 14-hydroxy derivative, while the corresponding 14-H derivative showed only slightly higher affinity. Thus, the 14-hydroxy group strongly affects the affinity of the antagonist for the OX1R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号