首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because many pathogens can infect multiple host species within a community, disease dynamics in a focal host species can be affected by the composition of the host community. We examine the extent to which spatial variation in species’ abundances in an avian host community may contribute to geographically varying prevalence of a recently emerged wildlife pathogen. Mycoplasma gallisepticum is a pathogen novel to songbirds that has caused substantial mortality in house finches (Carpodacus mexicanus) in eastern North America. Though the house finch is the primary host species for M. gallisepticum, the American goldfinch (Spinus tristis) and northern cardinal (Cardinalis cardinalis) are alternate hosts, and laboratory experiments have demonstrated M. gallisepticum transmission between house finches and goldfinches. Still unknown is the real world impact on disease dynamics of variation in abundances of the three hosts. We analyzed data from winter-long bird and disease surveys in the northeastern United States. We found that higher disease prevalence in house finches was associated with higher numbers of northern cardinals and American goldfinches, although only the effect of cardinal abundance was statistically significant. Nevertheless, our results indicate that spatial variation in bird communities has the potential to cause geographic variation in disease prevalence in house finches.  相似文献   

2.
Emerging infectious diseases often result from pathogens jumping to novel hosts. Identifying possibilities and constraints on host transfer is therefore an important facet of research in disease ecology. Host transfers can be studied for the bacterium Mycoplasma gallisepticum, predominantly a pathogen of poultry until its 1994 appearance and subsequent epidemic spread in a wild songbird, the house finch Haemorhous mexicanus and some other wild birds. We screened a broad range of potential host species for evidence of infection by M. gallisepticum in order to answer 3 questions: (1) is there a host phylogenetic constraint on the likelihood of host infection (house finches compared to other bird species); (2) does opportunity for close proximity (visiting bird feeders) increase the likelihood of a potential host being infected; and (3) is there seasonal variation in opportunity for host jumping (winter resident versus summer resident species). We tested for pathogen exposure both by using PCR to test for the presence of M. gallisepticum DNA and by rapid plate agglutination to test for the presence of antibodies. We examined 1,941 individual birds of 53 species from 19 avian families. In 27 species (15 families) there was evidence for exposure with M. gallisepticum although conjunctivitis was very rare in non-finches. There was no difference in detection rate between summer and winter residents, nor between feeder birds and species that do not come to feeders. Evidence of M. gallisepticum infection was found in all species for which at least 20 individuals had been sampled. Combining the present results with those of previous studies shows that a diverse range of wild bird species may carry or have been exposed to M. gallisepticum in the USA as well as in Europe and Asia.  相似文献   

3.
In 1994, Mycoplasma gallisepticum, a common bacterial poultry pathogen, caused an epidemic in house finches in the eastern part of their North American range where the species had been introduced in the 1940s. Birds with mycoplasmal conjunctivitis were reported across the entire eastern United States within 3–4 years. Here we track the course of the Mycoplasma gallisepticum epidemic as it reached native, western North American populations of the house finch. In 2002, Mycoplasma gallisepticum was first observed in a native house finch population in Missoula, MT, where it gradually increased in prevalence during the next 2 years. Concurrently, house finches with conjunctivitis were reported with increasing number in the Pacific Northwest. In native populations of the host, the epidemic expanded more slowly, and reached lower levels of prevalence than in the eastern, introduced range of the species. Maximal prevalence was about half in the Missoula population than in local populations in the East. Although many factors can contribute to these differences, we argue that it is most likely the higher genetic heterogeneity in western than in eastern populations caused the lower impact of the pathogen.  相似文献   

4.
Host behaviour towards infectious conspecifics is a crucial yet overlooked component of pathogen dynamics. Selection is expected to favour individuals who can recognize and avoid infected conspecifics in order to reduce their own risk of infection. However, evidence is scarce and limited to species employing chemical cues. Here, we experimentally examine whether healthy captive house finches (Carpodacus mexicanus) preferentially forage near a same-sex, healthy conspecific versus one infected with the directly transmissible pathogen Mycoplasma gallisepticum (MG), which causes lethargy and visible conjunctivitis. Interestingly, male house finches strongly preferred feeding near diseased conspecifics, while females showed no preference. This sex difference appeared to be the result of lower aggression rates in diseased males, but not in females. The reduced aggression of diseased males may act as an ‘evolutionary trap’ by presenting a historically beneficial behavioural cue in the context of a new environment, which now includes a recently emerged, potentially fatal pathogen. Since MG can be directly transmitted during feeding, healthy males may inadvertently increase their risk of contracting MG. This behaviour is likely to significantly contribute to the continued persistence of MG epidemics in wild populations.  相似文献   

5.
Individual heterogeneity can influence the dynamics of infectious diseases in wildlife and humans alike. Thus, recent work has sought to identify behavioural characteristics that contribute disproportionately to individual variation in pathogen acquisition (super-receiving) or transmission (super-spreading). However, it remains unknown whether the same behaviours enhance both acquisition and transmission, a scenario likely to result in explosive epidemics. Here, we examined this possibility in an ecologically relevant host–pathogen system: house finches and their bacterial pathogen, Mycoplasma gallisepticum, which causes severe conjunctivitis. We examined behaviours likely to influence disease acquisition (feeder use, aggression, social network affiliations) in an observational field study, finding that the time an individual spends on bird feeders best predicted the risk of conjunctivitis. To test whether this behaviour also influences the likelihood of transmitting M. gallisepticum, we experimentally inoculated individuals based on feeding behaviour and tracked epidemics within captive flocks. As predicted, transmission was fastest when birds that spent the most time on feeders initiated the epidemic. Our results suggest that the same behaviour underlies both pathogen acquisition and transmission in this system and potentially others. Identifying individuals that exhibit such behaviours is critical for disease management.  相似文献   

6.
Host genetic diversity can mediate pathogen resistance within and among populations. Here we test whether the lower prevalence of Mycoplasmal conjunctivitis in native North American house finch populations results from greater resistance to the causative agent, Mycoplasma gallisepticum (MG), than introduced, recently‐bottlenecked populations that lack genetic diversity. In a common garden experiment, we challenged wild‐caught western (native) and eastern (introduced) North American finches with a representative eastern or western MG isolate. Although introduced finches in our study had lower neutral genetic diversity than native finches, we found no support for a population‐level genetic diversity effect on host resistance. Instead we detected strong support for isolate differences: the MG isolate circulating in western house finch populations produced lower virulence, but higher pathogen loads, in both native and introduced hosts. Our results indicate that contemporary differences in host genetic diversity likely do not explain the lower conjunctivitis prevalence in native house finches, but isolate‐level differences in virulence may play an important role.  相似文献   

7.
Tests for the presence of pathogen DNA or antibodies are routinely used to survey for current or past infections. In diseases that emerge following a host jump estimates of infection rate might be under- or overestimated. We here examine whether observed rates of infection are biased for a non-focal host species in a model system. The bacterium Mycoplasma gallisepticum is a widespread pathogen in house finches (Haemorhous mexicanus), a fringillid finch, but an unknown proportion of individuals of other songbird species are also infected. Our goal is to determine the extent to which detection of M. gallisepticum DNA or antibodies against the bacteria in a non-fringillid bird species is over- or underestimated using black-capped chickadees Poecile atricapillus, a species in which antibodies against M. gallisepticum are frequently detected in free-living individuals. After keeping black-capped chickadees in captivity for 12 weeks, during which period the birds remained negative for M. gallisepticum, four were inoculated with M. gallisepticum and four were sham inoculated in both eyes to serve as negative controls. Simultaneously we inoculated six house finches with the same isolate of M. gallisepticum as a positive control. All inoculated birds of both species developed infections detectable by qPCR in the conjunctiva. For the 6 weeks following inoculation we detected antibodies in all M. gallisepticum-inoculated house finches but in only three of the four M. gallisepticum-inoculated black-capped chickadees. All house finches developed severe eye lesions but none of the black-capped chickadees did. Modeling the Rapid Plate Agglutination test results of black-capped chickadees shows that the rate of false-positive tests would be not more than 3.2%, while the estimated rate of false negatives is 55%. We conclude that the proportion of wild-caught individuals in which we detect M. gallisepticum-specific antibodies using Rapid Plate Agglutination is, if anything, substantially underestimated.  相似文献   

8.
Tests of eight Dutch Meloidogyne chitwoodi isolates to the differential set for host races 1 and 2 in M. chitwoodi provided no evidence for the existence of host race 2 in the Netherlands. The data showed deviations from expected reactions on the differential hosts, which raised doubts of the usefulness of the host race classification in M. chitwoodi. The term ''''pathotype'''' is proposed for groups of isolates of one Meloidogyne sp. that exhibit the same level of pathogenicity on genotypes of one host species. We recommend that the pathotype classification be applied in pathogen-host relationships when several genotypes of a Meloidogyne sp. are tested on several genotypes of one host species. Three pathotypes of M. chitwoodi were identified on Solanum bulbocastanum, suggesting at least two different genetic factors for virulence and resistance in the pathogen and the host species, respectively. The occurrence of several virulence factors in M. chitwoodi will complicate the successful application of resistance factors from S. bulbocastanum for developing resistant potato cultivars.  相似文献   

9.
Schistocerca gregaria nymphs and adults of both sexes were infected with eggs of Mermis nigrescens. Mermithid larvae grew more slowly in nymphal hosts, and emerging larvae were smaller than those from adult hosts. The longer the larvae remained in the host, the greater their size. Those developing in adult female hosts were longest. Single mermithid larvae that were transferred to a second host continued to grow and were significantly longer at emergence than larvae that developed solely in one host. In adult hosts that were infected with 40-300 M. nigrescens eggs, the percentage of mermithids that became males was strongly dependent on host weight at infective doses of 90 eggs or more. Results are discussed in relation to nutrient stress on the larvae and its importance in developing in vitro culture techniques.  相似文献   

10.
Predicting species'' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution.  相似文献   

11.
Brassicaceous cover crops can be used for biofumigation after soil incorporation of the mowed crop. This strategy can be used to manage root-knot nematodes (Meloidogyne spp.), but the fact that many of these crops are host to root-knot nematodes can result in an undesired nematode population increase during the cultivation of the cover crop. To avoid this, cover crop cultivars that are poor or nonhosts should be selected. In this study, the host status of 31 plants in the family Brassicaceae for the three root-knot nematode species M. incognita, M. javanica, and M. hapla were evaluated, and compared with a susceptible tomato host in repeated greenhouse pot trials. The results showed that M. incognita and M. javanica responded in a similar fashion to the different cover cultivars. Indian mustard (Brassica juncea) and turnip (B. rapa) were generally good hosts, whereas most oil radish cultivars (Raphanus. sativus ssp. oleiferus) were poor hosts. However, some oil radish cultivars were among the best hosts for M. hapla. The arugula (Eruca sativa) cultivar Nemat was a poor host for all three nematode species tested. This study provides important information for chosing a cover crop with the purpose of managing root-knot nematodes.  相似文献   

12.
Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.  相似文献   

13.
Random amplified polymorphic DNA (RAPD) bands that distinguish Meloidogyne hapla and M. chitwoodi from each other, and from other root-knot nematode species, were identified using a series of random octamer primers. The species-specific amplified DNA fragments were cloned and sequenced, and then the sequences were used to design 20-mer primer pairs that specifically amplified a DNA fragment from each species. Using the primer pairs, successful amplifications from single juveniles were readily attained. A mixture of four primers in a single PCR reaction mixture was shown to identify single juveniles of M. hapla and M. chitwoodi. To confirm specificity, the primers were used to amplify DNA from several isolates of M. hapla that originated from different crops and locations in North America and also from isolates of M. chitwoodi that differed in host range. In characterizing the M. hapla isolates, it was noted that there was a mitochondrial DNA polymorphism among isolates for cleavage by the restriction endonuclease DraI.  相似文献   

14.
Although ambient temperature has diverse effects on disease dynamics, few studies have examined how temperature alters pathogen transmission by changing host physiology or behaviour. Here, we test whether reducing ambient temperature alters host foraging, pathology and the potential for fomite transmission of the bacterial pathogen Mycoplasma gallisepticum (MG), which causes seasonal outbreaks of severe conjunctivitis in house finches (Haemorhous mexicanus). We housed finches at temperatures within or below the thermoneutral zone to manipulate food intake by altering energetic requirements of thermoregulation. We predicted that pathogen deposition on bird feeders would increase with temperature-driven increases in food intake and with conjunctival pathology. As expected, housing birds below the thermoneutral zone increased food consumption. Despite this difference, pathogen deposition on feeders did not vary across temperature treatments. However, pathogen deposition increased with conjunctival pathology, independently of temperature and pathogen load, suggesting that MG could enhance its transmission by increasing virulence. Our results suggest that in this system, host physiological responses are more important for transmission potential than temperature-dependent alterations in feeding. Understanding such behavioural and physiological contributions to disease transmission is critical to linking individual responses to climate with population-level disease dynamics.  相似文献   

15.
Infections frequently consist of more than one strain of a given pathogen. Experiments have shown that co-infecting strains often compete, so that the infection intensity of each strain in mixed infections is lower than in single strain infections. Such within-host competition can have important epidemiological and evolutionary consequences. However, the extent of competition has rarely been investigated in wild, naturally infected hosts, where there is noise in the form of varying inoculation doses, asynchronous infections and host heterogeneity, which can potentially alleviate or eliminate competition. Here, we investigated the extent of competition between Borrelia afzelii strains (as determined by ospC genotype) in three host species sampled in the wild. For this purpose, we developed a protocol for 454 amplicon sequencing of ospC, which allows both detection and quantification of each individual strain in an infection. Each host individual was infected with one to six ospC strains. The infection intensity of each strain was lower in mixed infections than in single ones, showing that there was competition. Rank-abundance plots revealed that there was typically one dominant strain, but that the evenness of the relative infection intensity of the different strains in an infection increased with the multiplicity of infection. We conclude that within-host competition can play an important role under natural conditions despite many potential sources of noise, and that quantification by next-generation amplicon sequencing offers new possibilities to dissect within-host interactions in naturally infected hosts.  相似文献   

16.
The reliability of morphological characters and host differential plants for distinguishing between two populations of Meloidogyne incognita was studied. Population A (originally from North Carolina) had incognita-type perineal patterns. A single egg mass subpopulation of population A had a mixture of incognita and acrita perineal patterns with 33% of the patterns atypical for either species. Population B (from Georgia) had predominantly acrita-type patterns with only about 5% atypical patterns. The head shapes of males from both populations were mainly M. incognita. On the basis of stylet length, both populations conformed to M. incognita acrita. Both populations were identified as M. incognita race 1 by reaction on the North Carolina differential hosts. Reactions on azalea and pepper gave no clear identification of the populations. We concluded that there is no relation between perineal pattern, male head shape, and parasitism of host differentials with the two populations studied.  相似文献   

17.
Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica.  相似文献   

18.
Mycoplasma gallisepticum, an important pathogen of poultry, especially chickens and turkeys, emerged in 1994 as the cause of conjunctivitis in house finches (Carpodacus mexicanus) in their eastern range of North America. The resulting epidemic of M. gallisepticum conjunctivitis severely decreased house finch abundance and the continuing endemic disease in the eastern range has been associated with repeating seasonal peaks of conjunctivitis and limitation of host populations. Mycoplasma gallisepticum conjunctivitis was first confirmed in the western native range of house finches in 2002 in a Missoula, Montana, population. Herein, we report further western expansion of M. gallisepticum conjunctivitis in the native range of house finches based on positive polymerase chain reaction results with samples from birds captured in 2004 and 2005 near Portland, Oregon.  相似文献   

19.
Interspecific transmission of endosymbiotic Spiroplasma by mites   总被引:1,自引:0,他引:1       下载免费PDF全文
The occurrence of closely related strains of maternally transmitted endosymbionts in distantly related insect species indicates that these infections can colonize new host species by lateral transfer, although the mechanisms by which this occurs are unknown. We investigated whether ectoparasitic mites, which feed on insect haemolymph, can serve as interspecific vectors of Spiroplasma poulsonii, a male-killing endosymbiont of Drosophila. Using Spiroplasma-specific primers for PCR, we found that mites can pick up Spiroplasma from infected Drosophila nebulosa females and subsequently transfer the infection to Drosophila willistoni. Some of the progeny of the recipient D. willistoni were infected, indicating successful maternal transmission of the Spiroplasma within the new host species. However, the transmission rate of the infection from recipient flies to their offspring was low, perhaps due to low Spiroplasma density in the recipient flies.  相似文献   

20.
Pathogenic or parasitic infections pose numerous physiological challenges to organisms. Carotenoid pigments have often been used as biomarkers of disease state and impact because they integrate multiple aspects of an individual’s condition and nutritional and health state. Some diseases are known to influence carotenoid uptake from food (e.g. coccidiosis) and carotenoid use (e.g. as antioxidants/immunostimulants in the body, or for sexually attractive coloration), but there is relatively little information in animals about how different types of carotenoids from different tissue sources may be affected by disease. Here we tracked carotenoid accumulation in two body pools (retina and plasma) as a function of disease state in free-ranging house finches (Haemorhous mexicanus). House finches in eastern North America can contract mycoplasmal conjunctivitis (Mycoplasma gallisepticum, or MG), which can progress from eye swelling to eye closure and death. Previous work showed that systemic immune challenges in house finches lower carotenoid levels in retina, where they act as photoprotectors and visual filters. We assessed carotenoid levels during the molt period, a time of year when finches uniquely metabolize ketocarotenoids (e.g. 3-hydroxy-echinenone) for acquisition of sexually selected red plumage coloration, and found that males infected with MG circulated significantly lower levels of 3-hydroxy-echinenone, but no other plasma carotenoid types, than birds exhibiting no MG symptoms. This result uncovers a key biochemical mechanism for the documented detrimental effect of MG on plumage redness in H. mexicanus. In contrast, we failed to find a relationship between MG infection status and retinal carotenoid concentrations. Thus, we reveal differential effects of an infectious eye disease on carotenoid types and tissue pools in a wild songbird. At least compared to retinal sources (which appear somewhat more temporally stable than other body carotenoid pools, even to diseases of the eye evidently), our results point to either a high physiological cost of ketocarotenoid synthesis (as is argued in models of sexually selected carotenoid coloration) or high benefit of using this ketocarotenoid to combat infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号